2023-03-26 20:00:14 -07:00
|
|
|
% use [nosolutions] flag to hide solutions.
|
|
|
|
% use [solutions] flag to show solutions.
|
|
|
|
\documentclass[
|
|
|
|
solutions,
|
2023-04-04 15:03:15 -07:00
|
|
|
nowarning,
|
2023-04-17 11:34:36 -07:00
|
|
|
singlenumbering
|
2023-03-26 20:00:14 -07:00
|
|
|
]{../../resources/ormc_handout}
|
|
|
|
|
|
|
|
\usepackage{tikz}
|
|
|
|
\usetikzlibrary{
|
|
|
|
matrix,
|
|
|
|
decorations.pathreplacing,
|
|
|
|
calc,
|
|
|
|
positioning,
|
|
|
|
fit
|
|
|
|
}
|
|
|
|
|
2023-04-05 09:08:43 -07:00
|
|
|
|
|
|
|
% Let's give clarifications about the meaning of Z and R when we use them in the first problems.
|
|
|
|
|
|
|
|
% Definitely define $R^n$ before using. Optionally you may add a problem "convince yourself that $R^2$ is a plane and $R^3$ is a 3-d space".
|
|
|
|
|
|
|
|
% Maybe we can add an example of a linear transformation from R^2 to R^2? Rotation? Scaling of y-axis?
|
|
|
|
|
|
|
|
% Slow down, understand linear transformations fully.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-03-26 20:00:14 -07:00
|
|
|
%\usepackage{lua-visual-debug}
|
|
|
|
\renewcommand{\arraystretch}{1.2}
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
<Advanced 2>
|
|
|
|
<Spring 2023>
|
|
|
|
{Linear Maps}
|
|
|
|
{
|
|
|
|
Prepared by Mark on \today \\
|
|
|
|
}
|
|
|
|
|
2023-04-17 11:34:36 -07:00
|
|
|
%\input{parts/? fields}
|
|
|
|
%\input{parts/? spaces}
|
2023-03-26 20:00:14 -07:00
|
|
|
|
2023-04-17 11:34:36 -07:00
|
|
|
\input{parts/0 intro}
|
|
|
|
\input{parts/1 linear}
|
|
|
|
\input{parts/2 matrices}
|
2023-03-26 22:09:51 -07:00
|
|
|
|
2023-03-26 20:00:14 -07:00
|
|
|
\end{document}
|