Added linear maps handout
This commit is contained in:
		
							
								
								
									
										50
									
								
								Advanced/Linear Maps/main.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										50
									
								
								Advanced/Linear Maps/main.tex
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,50 @@ | ||||
| % use [nosolutions] flag to hide solutions. | ||||
| % use [solutions] flag to show solutions. | ||||
| \documentclass[ | ||||
| 	solutions, | ||||
| 	singlenumbering | ||||
| ]{../../resources/ormc_handout} | ||||
|  | ||||
| \usepackage{tikz} | ||||
| \usetikzlibrary{ | ||||
| 	matrix, | ||||
| 	decorations.pathreplacing, | ||||
| 	calc, | ||||
| 	positioning, | ||||
| 	fit | ||||
| } | ||||
|  | ||||
| %\usepackage{lua-visual-debug} | ||||
| \renewcommand{\arraystretch}{1.2} | ||||
| \begin{document} | ||||
|  | ||||
| 	\maketitle | ||||
| 		<Advanced 2> | ||||
| 		<Spring 2023> | ||||
| 		{Linear Maps} | ||||
| 		{ | ||||
| 			Prepared by Mark on \today \\ | ||||
| 		} | ||||
|  | ||||
| 	\section{Fields and Vector Spaces} | ||||
|  | ||||
|  | ||||
| 	\input{parts/0 fields} | ||||
| 	\input{parts/1 spaces} | ||||
| 	\input{parts/2 linearity} | ||||
| 	\input{parts/3 matrices} | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\section{Bonus} | ||||
|  | ||||
| 	\problem{} | ||||
| 	Is the set of all linear maps a vector space? | ||||
| 	\vfill | ||||
|  | ||||
| 	\definition{} | ||||
| 	Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. | ||||
| 	\vfill | ||||
|  | ||||
| \end{document} | ||||
							
								
								
									
										47
									
								
								Advanced/Linear Maps/parts/0 fields.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										47
									
								
								Advanced/Linear Maps/parts/0 fields.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,47 @@ | ||||
| \definition{Fields and Field Axioms} | ||||
| A \textit{field} $\mathbb{F}$ consists of a set $A$ and two operations $+$ and $\times$. \\ | ||||
| As usual, we may abbreviate $a \times b$ as $ab$. \\ | ||||
| The following axioms must be satisfied for any $a, b, c \in \mathbb{F}$: | ||||
|  | ||||
| \vspace{1mm} | ||||
| \begin{center} | ||||
| % @{} supresses the space between columns. | ||||
| % @{=} makes = a column seperator. | ||||
| \begin{tabular}{l | r@{=}l | r@{=}l} | ||||
| 	\hline | ||||
| 		\multicolumn{1}{|c|}{Name} & | ||||
| 		\multicolumn{2}{c}{$+$} & | ||||
| 		\multicolumn{2}{|c|}{$\times$} \\ | ||||
| 	\hline | ||||
| 	Closure			& \multicolumn{2}{c|}{$a+b \in \mathbb{F}$} & \multicolumn{2}{c}{$ab \in \mathbb{F}$} \\ | ||||
| 	Associativity	& $(a+b)+c~$&$~a+b+c$ 	& $(ab)c~$&$~a(bc)$ \\ | ||||
| 	Commutativity	& $a+b~$&$~b+a$ 		& $ab~$&$~ba$ \\ | ||||
| 	Distributivity	& $a(b+c)~$&$~ab + ac$	& \multicolumn{2}{}{} \\ | ||||
| 	Identity		& $a+0~$&$~a$			& $1 \times a~$&$~a$ \\ | ||||
| 	Inverses		& $a + (-a)~$&$~0$		& $a \times a^{-1}~$&$~1$ | ||||
| \end{tabular} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that all fields are groups. \\ | ||||
| Convince yourself that not all groups are fields. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Is $\mathbb{Z}$ a field under our usual definitions of $+$ and $\times$? \\ | ||||
| Which axioms does it satisfy, and which does it violate? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Verify that $\mathbb{R}$ is a field. | ||||
| \vfill | ||||
|  | ||||
| \generic{Remark:} | ||||
| We won't worry too much about fields this week. They simply provide a foundation for \textit{spaces}. \\ | ||||
| As such, you may assume that we are working in $\mathbb{R}$ for the rest of this handout. | ||||
|  | ||||
| \pagebreak | ||||
							
								
								
									
										92
									
								
								Advanced/Linear Maps/parts/1 spaces.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										92
									
								
								Advanced/Linear Maps/parts/1 spaces.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,92 @@ | ||||
| \definition{Vector Spaces} | ||||
| A \textit{space} over a field $\mathbb{F}$ consists of the following elements: | ||||
| \begin{itemize}[itemsep = 2mm] | ||||
| 	\item A set $V$, the elements of which are called \textit{vectors} | ||||
| 	\item An operation called \textit{vector addition}, denoted $+$ \\ | ||||
| 		Vector addition operates on two elements of $V$. \\ | ||||
|  | ||||
| 	\item An operation called \textit{scalar multilplication}, denoted $\times$ \\ | ||||
| 		Scalar multiplication multiplies an element of $V$ by an element of $\mathbb{F}$. \\ | ||||
| 		Any element of $\mathbb{F}$ is called a \textit{scalar}. | ||||
| \end{itemize} | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| \textbf{Note:} | ||||
| The same symbols are used for additions and multiplications in both $\mathbb{F}$ and $V$. \\ | ||||
| Be careful, since \textit{these are different operations!} \\ | ||||
| Make sure you're aware of the context of each $+$ and $\times$ as you work through this handout. | ||||
|  | ||||
| \vspace{5mm} | ||||
|  | ||||
| Vector addition and multiplication must have the following properties. \\ | ||||
| Note that $x, y, z \in V$ and $a, b\in \mathbb{F}$. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| % [t] and \vspace{0pt} ensure alignment at top | ||||
| \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} | ||||
| 	\begin{center} | ||||
| 	\begin{tabular}{l | r@{=}l } | ||||
| 		\hline | ||||
| 		\multicolumn{3}{|c|}{Properties of vector addition} \\ | ||||
| 		\hline | ||||
| 		Closure			& \multicolumn{2}{c}{$x+y \in V$} \\ | ||||
| 		Associativity	& $(x+y)+z~$&$~x+y+z$	\\ | ||||
| 		Commutativity	& $x+y~$&$~y+x$ 		\\ | ||||
| 		Distributivity	& $x(y+z)~$&$~xy + xz$	\\ | ||||
| 		Identity		& $x+0~$&$~x$			\\ | ||||
| 		Inverse			& $x + (-x)~$&$~0$ | ||||
| 	\end{tabular} | ||||
| 	\end{center} | ||||
| \end{minipage}% | ||||
| \hfill% | ||||
| \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} | ||||
| 	\begin{center} | ||||
| 	\begin{tabular}{l | r@{=}l } | ||||
| 		\hline | ||||
| 		\multicolumn{3}{|c|}{Properties of vector multiplication} \\ | ||||
| 		\hline | ||||
| 		Closure			& \multicolumn{2}{c}{$ax \in V$} \\ | ||||
| 		Distributivity	& $a(x+y)~$&$~ax+ay$	\\ | ||||
| 						& $(a+b)x~$&$~ax+bx$	\\ | ||||
| 		Compatibility$^*$	& $(ab)x~$&$~x(ba)$		\\ | ||||
| 		Identity		& $a+0~$&$~a$ | ||||
| 	\end{tabular} | ||||
| \end{center} | ||||
| \end{minipage} | ||||
|  | ||||
| \vspace{5mm} | ||||
|  | ||||
| \definition{} | ||||
| There is a good chance you are familiar with basic vector arithmetic. \\ | ||||
| Here's a quick review: | ||||
| \begin{itemize} | ||||
| 	\item Scalar multiplication is done elementwise: $3 \times [a, b, c] = [3a, 3b, 3c]$. | ||||
| 	\item Vector addition is similar: $[a, b, c] + [1, 2, 3] = [a+1,~b+2,~c+3]$. | ||||
| 	\item Vector addition is not valid for vectors of different sizes. | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| We usually use the \textit{dot product} as our vector product. It is defined as follows. \\ | ||||
| Given two vectors $a, b \in \mathbb{R}^n$, the dot product $a \cdot b$ is $\sum_1^n a_ib_i$. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| In other words, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$, | ||||
| $$ | ||||
| 	a \cdot b = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32 | ||||
| $$ | ||||
| As you may expect, the dot product $ab$ is valid iff $a$ and $b$ are the same size. | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that the dot product satisfies the properties of a vector product listed above. \\ | ||||
| Conclude that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
							
								
								
									
										42
									
								
								Advanced/Linear Maps/parts/2 linearity.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								Advanced/Linear Maps/parts/2 linearity.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,42 @@ | ||||
| \section{Linearity} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$. | ||||
|  | ||||
|  | ||||
| \definition{This one is worth remembering} | ||||
| Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\ | ||||
| We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$: | ||||
| \begin{itemize} | ||||
| 	\item $f(u + v) = f(u) + f(v)$ | ||||
| 	\item $f(au) = af(u)$ | ||||
| \end{itemize} | ||||
| In other words, $f$ is linear if it is \say{closed} under addition and scalar multiplication. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| It is often convenient to combine the two conditions above into one. \\ | ||||
| Show that $f(au + v) = af(u) + f(v)$ iff $f$ is linear. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Is $f(x) = mx + b$ a linear map on $\mathbb{R}$? | ||||
|  | ||||
| \vfill | ||||
| \problem{} | ||||
| In general, what does a linear map in $\mathbb{R}^n$ look like? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Is $\text{median}(v): \mathbb{R}^n \to \mathbb{R}$ a linear map on $\mathbb{R}^n$? | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Is $\frac{d}{dx}(p): \mathbb{P}^n \to \mathbb{P}^{n-1}$ a linear map on $\mathbb{P}^n$? | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										198
									
								
								Advanced/Linear Maps/parts/3 matrices.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										198
									
								
								Advanced/Linear Maps/parts/3 matrices.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,198 @@ | ||||
| \section{Matrices} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{matrix} is a two-dimensional array of numbers: \\ | ||||
| $$ | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	1 & 2 & 3 \\ | ||||
| 	4 & 5 & 6 | ||||
| \end{bmatrix} | ||||
| $$ | ||||
| The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. | ||||
|  | ||||
| \problem{} | ||||
| Draw a $3 \times 2$ matrix. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \definition{Matrices as Transformations} | ||||
| We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$: | ||||
| \footnotetext{This is an uncommon word to use in this context. You will soon see why.} | ||||
| $$ | ||||
| Av = | ||||
| \begin{bmatrix} | ||||
| 	1 & 2 & 3 \\ | ||||
| 	4 & 5 & 6 | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| 	a \\ b \\ c | ||||
| \end{bmatrix} | ||||
| = | ||||
| \begin{bmatrix} | ||||
| 	1a + 2b + 3c \\ | ||||
| 	4a + 5b + 6c | ||||
| \end{bmatrix} | ||||
| $$ | ||||
| Look closely. Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$: | ||||
|  | ||||
| $$ | ||||
| Av = | ||||
| \begin{bmatrix} | ||||
| 	\text{---} a_1 \text{---} \\ | ||||
| 	\text{---} a_2 \text{---} | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| 	| \\ | ||||
| 	v \\ | ||||
| 	| \\ | ||||
| \end{bmatrix} | ||||
| = | ||||
| \begin{bmatrix} | ||||
| 	r_1v \\ | ||||
| 	r_2v | ||||
| \end{bmatrix} | ||||
| $$ | ||||
|  | ||||
| Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix. | ||||
|  | ||||
| \problem{} | ||||
| Compute the following \say{product}: | ||||
|  | ||||
| $$ | ||||
| \begin{bmatrix} | ||||
| 	2 & 9 \\ | ||||
| 	7 & 5 \\ | ||||
| 	3 & 4 | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| 	5 \\ 3 | ||||
| \end{bmatrix} | ||||
| $$ | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \generic{Remark:} | ||||
| It is a bit more interesting to think of matrix-vector multiplication in the following way: \\ | ||||
|  | ||||
| \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} | ||||
| 	\begin{center} | ||||
| 		The problem: | ||||
| 		\vspace{2mm} | ||||
|  | ||||
| 		$$ | ||||
| 		\begin{bmatrix} | ||||
| 			2 & 9 \\ | ||||
| 			7 & 5 \\ | ||||
| 			3 & 4 | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			5 \\ 3 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			37 \\ 50 \\ 27 | ||||
| 		\end{bmatrix} | ||||
| 		$$ | ||||
| 	\end{center} | ||||
| \end{minipage}% | ||||
| \hfill | ||||
| \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} | ||||
| 	\begin{center} | ||||
| 	Top-input, right-output: | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	\begin{tikzpicture}[>=stealth,thick,baseline] | ||||
| 		\matrix [ | ||||
| 			matrix of math nodes, | ||||
| 			left delimiter={[}, | ||||
| 			right delimiter={]} | ||||
| 		] (A) { | ||||
| 			2 & 9 \\ | ||||
| 			7 & 5 \\ | ||||
| 			3 & 4 \\ | ||||
| 		}; | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-1-1)(A-1-1), | ||||
| 			inner xsep=0mm,inner ysep=3mm, | ||||
| 			label=above:5 | ||||
| 		] (L) {}; | ||||
| 		\draw[->, gray] (L.north) -- ([yshift=0mm]A-1-1.north); | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-1-2)(A-1-2), | ||||
| 			inner xsep=0mm,inner ysep=3mm, | ||||
| 			label=above:3 | ||||
| 		] (R) {}; | ||||
| 		\draw[->, gray] (R.north) -- ([yshift=0mm]A-1-2.north); | ||||
|  | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-1-2)(A-1-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$10 + 27 = 37$} | ||||
| 		](Y) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y); | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-2-2)(A-2-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$35 + 15 = 50$} | ||||
| 		](H) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H); | ||||
|  | ||||
| 		\node[ | ||||
| 			fit=(A-3-2)(A-3-2), | ||||
| 			inner xsep=8mm,inner ysep=0mm, | ||||
| 			label=right:{$15 + 12 = 27$} | ||||
| 		](N) {}; | ||||
| 		\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N); | ||||
| 	\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage}% | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Be aware that this is only a model for intuition. \\ | ||||
| Make sure you understand the dot product definition on the previous page. | ||||
|  | ||||
| \vspace{5mm} | ||||
|  | ||||
| \theorem{}<thebigtheorem> | ||||
| Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\ | ||||
| Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\ | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| In other words, \textbf{matrices are linear transformations}. \\ | ||||
| If you only learn only one thing today, this should be it. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<prooffwd> | ||||
| Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\ | ||||
| Before you start, answer the following questions: | ||||
| \begin{itemize} | ||||
| 	\item What is $A$? | ||||
| 	\item What is $v$? | ||||
| 	\item What are their sizes? | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<proofback> | ||||
| Show that any linear transformation can be written as a matrix. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\ | ||||
| Repeat \ref{prooffwd} and \ref{proofback} using only axioms. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
		Reference in New Issue
	
	Block a user