2023-03-26 20:00:14 -07:00
|
|
|
% use [nosolutions] flag to hide solutions.
|
|
|
|
% use [solutions] flag to show solutions.
|
|
|
|
\documentclass[
|
|
|
|
solutions,
|
2023-04-04 15:03:15 -07:00
|
|
|
nowarning,
|
|
|
|
%singlenumbering
|
2023-03-26 20:00:14 -07:00
|
|
|
]{../../resources/ormc_handout}
|
|
|
|
|
|
|
|
\usepackage{tikz}
|
|
|
|
\usetikzlibrary{
|
|
|
|
matrix,
|
|
|
|
decorations.pathreplacing,
|
|
|
|
calc,
|
|
|
|
positioning,
|
|
|
|
fit
|
|
|
|
}
|
|
|
|
|
2023-04-05 09:08:43 -07:00
|
|
|
|
|
|
|
% Let's give clarifications about the meaning of Z and R when we use them in the first problems.
|
|
|
|
|
|
|
|
% Definitely define $R^n$ before using. Optionally you may add a problem "convince yourself that $R^2$ is a plane and $R^3$ is a 3-d space".
|
|
|
|
|
|
|
|
% Maybe we can add an example of a linear transformation from R^2 to R^2? Rotation? Scaling of y-axis?
|
|
|
|
|
|
|
|
% Slow down, understand linear transformations fully.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-03-26 20:00:14 -07:00
|
|
|
%\usepackage{lua-visual-debug}
|
|
|
|
\renewcommand{\arraystretch}{1.2}
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
\maketitle
|
|
|
|
<Advanced 2>
|
|
|
|
<Spring 2023>
|
|
|
|
{Linear Maps}
|
|
|
|
{
|
|
|
|
Prepared by Mark on \today \\
|
|
|
|
}
|
|
|
|
|
|
|
|
\input{parts/0 fields}
|
|
|
|
\input{parts/1 spaces}
|
2023-04-03 11:40:14 -07:00
|
|
|
\input{parts/2 linear}
|
2023-03-26 20:00:14 -07:00
|
|
|
\input{parts/3 matrices}
|
|
|
|
|
|
|
|
|
2023-04-04 15:03:15 -07:00
|
|
|
\section{Norms}
|
2023-03-26 20:00:14 -07:00
|
|
|
|
2023-04-04 15:03:15 -07:00
|
|
|
\definition{}
|
|
|
|
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
|
|
|
|
Where $x, y \in V$ and $c \in F$:
|
2023-03-26 20:00:14 -07:00
|
|
|
|
2023-04-04 15:03:15 -07:00
|
|
|
\begin{itemize}
|
|
|
|
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
|
|
|
|
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
|
|
|
|
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
|
2023-03-26 20:00:14 -07:00
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
2023-03-26 22:09:51 -07:00
|
|
|
\problem{}
|
2023-04-04 15:03:15 -07:00
|
|
|
Show that every norm satisfies the reverse triangle inequality:
|
|
|
|
|
|
|
|
$$
|
|
|
|
||x - y|| \geq |~||x|| - ||y||~|
|
|
|
|
$$
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Prove the Cauchy-Schwartz inequality:
|
|
|
|
|
|
|
|
$$
|
|
|
|
||\langle x, y \rangle|| = ||x||~||y||
|
|
|
|
$$
|
|
|
|
|
2023-03-26 22:09:51 -07:00
|
|
|
\vfill
|
|
|
|
|
2023-03-26 20:00:14 -07:00
|
|
|
\end{document}
|