Edits
This commit is contained in:
		| @ -39,12 +39,12 @@ | ||||
|  | ||||
| 	\section{Bonus} | ||||
|  | ||||
| 	\problem{} | ||||
| 	Is the set of all linear maps a vector space? | ||||
| 	\vfill | ||||
|  | ||||
| 	\definition{} | ||||
| 	Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. | ||||
| 	\vfill | ||||
|  | ||||
| 	\problem{} | ||||
| 	Is the set of all linear maps a vector space? | ||||
| 	\vfill | ||||
|  | ||||
| \end{document} | ||||
| @ -4,7 +4,7 @@ | ||||
| A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$. | ||||
|  | ||||
|  | ||||
| \definition{This one is worth remembering} | ||||
| \definition{} | ||||
| Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\ | ||||
| We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$: | ||||
| \begin{itemize} | ||||
|  | ||||
| @ -16,7 +16,7 @@ Draw a $3 \times 2$ matrix. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \definition{Matrices as Transformations} | ||||
| \definition{} | ||||
| We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$: | ||||
| \footnotetext{This is an uncommon word to use in this context. You will soon see why.} | ||||
| $$ | ||||
| @ -57,7 +57,7 @@ $$ | ||||
| Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix. | ||||
|  | ||||
| \problem{} | ||||
| Compute the following \say{product}: | ||||
| Compute the following: | ||||
|  | ||||
| $$ | ||||
| \begin{bmatrix} | ||||
| @ -186,13 +186,27 @@ Before you start, answer the following questions: | ||||
| \problem{}<proofback> | ||||
| Show that any linear transformation can be written as a matrix. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space. | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}p$. \\ | ||||
| Find a matrix that corresponds to $D$. \\ | ||||
| \hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How solutions?} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\ | ||||
| Repeat \ref{prooffwd} and \ref{proofback} using only axioms. | ||||
| Repeat \ref{prooffwd} and \ref{proofback} using only axioms, without assuming that we're working in $\mathbb{R}^n$. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
		Reference in New Issue
	
	Block a user