157 lines
4.8 KiB
TeX
Raw Normal View History

2023-05-06 17:05:30 -07:00
\section{Structures}
2023-05-11 14:54:18 -07:00
\definition{}
A \textit{universe} is a set of meaningless objects. Here are a few examples:
2023-05-06 17:05:30 -07:00
\begin{itemize}
\item $\{a, b, ..., z\}$
\item $\{0, 1\}$
\item $\mathbb{Z}$, $\mathbb{R}$, etc.
\end{itemize}
\definition{}
2024-05-23 12:40:43 -07:00
A \textit{structure} consists of a universe and a set of \textit{symbols}. \par
2023-05-11 14:54:18 -07:00
A structure's symbols give meaning to the objects in its universe.
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2023-06-19 20:24:33 -07:00
Symbols come in three types:
2023-05-09 21:23:09 -07:00
\begin{itemize}
2024-05-23 12:40:43 -07:00
\item \textit{Constant symbols}, which let us specify specific elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $0, 1, \frac{1}{2}, \pi$
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
\item \textit{Function symbols}, which let us navigate between elements of our universe. \par
Examples: $+, \times, \sin{x}, \sqrt{x}$ \par
\note{In this handout, symbols we usually call \say{operators} are also called functions. \par
The only difference between $a + b$ and $+(a, b)$ is notation.}
2023-05-09 21:23:09 -07:00
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
\item \textit{Relation symbols}, which let us compare elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $<, >, \leq, \geq$ \par
\vspace{2mm}
\end{itemize}
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default. \par
By definition, $a = b$ is true if and only if $a$ and $b$ are the same element of our universe.
2023-05-11 14:54:18 -07:00
2023-05-06 17:05:30 -07:00
\vspace{3mm}
\example{}
The first structure we'll look at is the following:
$$
2023-05-09 21:23:09 -07:00
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)
2023-05-06 17:05:30 -07:00
$$
\vspace{2mm}
2024-05-23 12:40:43 -07:00
This is a structure over the universe $\mathbb{Z}$ that provides the following symbols:
2023-05-06 17:05:30 -07:00
\begin{itemize}
2023-05-09 21:23:09 -07:00
\item Constants: \tab $\{0, 1\}$
\item Functions: \tab $\{+, -\}$
\item Relations: \tab $\{<\}$
2023-05-06 17:05:30 -07:00
\end{itemize}
\vspace{2mm}
2024-05-23 12:40:43 -07:00
If we look at our set of constant symbols, we see that the only integers
we can directly refer to in this structure are 0 and 1. If we want any
others, we must define them using the tools this structure offers.
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
\vspace{2mm}
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
To \say{define} an element of a set, we need to write a sentence that is only true for that element. \par
For example, if we want to define 2 in the structure above, \par
we could use the sentence \say{$2$ is the $x$ that satisfies $[1 + 1 = x]$.} \par
This is a valid definition because $2$ is the \textbf{only} element of $\mathbb{Z}$ for which $[1 + 1 = x]$
evaluates to \texttt{true}.
2023-05-06 17:05:30 -07:00
\problem{}
2023-08-02 13:11:14 -07:00
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)$.
2023-05-06 17:05:30 -07:00
2024-05-23 12:40:43 -07:00
\begin{solution}
The sentences \say{$x$ where $[x + 1 = 0]$} and \say{$x$ where $[0 - 1 = x]$} both work.
\end{solution}
2023-05-06 17:05:30 -07:00
\vfill
\pagebreak
2024-05-23 12:40:43 -07:00
2023-05-06 17:05:30 -07:00
Let us formalize what we found in the previous two problems. \par
2024-05-23 12:40:43 -07:00
\definition{Formulas}
A \textit{formula} in a structure $S$ is a well-formed string
of constants, functions, relations, \par and logical operators.
2023-05-06 17:05:30 -07:00
\vspace{2mm}
You already know what a \say{well-formed} string is: $1 + 1$ is fine, $\sqrt{+}$ is nonsense. \par
For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
2023-05-11 14:54:18 -07:00
\vspace{2mm}
2024-05-23 12:40:43 -07:00
As a quick example, the formula $\phi(x) = [1 + 1 = x]$ evaluates to \texttt{true} when $x$ is 2 \par
and to \texttt{false} otherwise.
\definition{Free Variables}
2023-05-11 14:54:18 -07:00
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
Formulas with free variables let us define \say{properties} that certain objects have. \par
2024-05-23 12:40:43 -07:00
For example, $x$ is a free variable in the formula above. \par
$\varphi(2)$ is \texttt{true} and $\varphi(-3)$ is \texttt{false}. \par
2023-08-02 13:11:14 -07:00
\vspace{2mm}
2024-05-23 12:40:43 -07:00
This \say{free variable} notation is much like the function notation we are used to: \par
2023-08-02 13:11:14 -07:00
$\varphi(x) = [x > 0]$ is similar to $f(x) = x + 1$, since the values of $\varphi(x)$ and $f(x)$ depend on $x$.
2023-05-06 17:05:30 -07:00
\definition{Definable Elements}
2023-05-14 19:49:13 -07:00
Say $S$ is a structure with a universe $U$. \par
2023-05-11 14:54:18 -07:00
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
2023-05-06 17:05:30 -07:00
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-08-02 13:11:14 -07:00
Define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$. \par
2023-05-14 19:49:13 -07:00
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.}
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-07-26 17:55:07 -07:00
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $\varphi(x) = [x \times x = 4]$.
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-08-02 13:11:14 -07:00
Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$. \par
Why can't you do it?
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-07-26 17:55:07 -07:00
This isn't possible. We could try $\varphi(x) = [x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \par
2023-05-06 21:30:18 -07:00
We have no way to distinguish between negative and positive numbers.
2023-05-14 19:49:13 -07:00
\begin{instructornote}
Actually, it is. Bonus problem: how? \par
Do this after understanding quantifiers.
\end{instructornote}
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem{}
2023-05-14 19:49:13 -07:00
What numbers are definable in the structure $\Bigl( \mathbb{R}^+_0 ~\big|~ \{1, 2, \div \} \Bigr)$?
2023-05-06 17:05:30 -07:00
\begin{solution}
2023-05-14 19:49:13 -07:00
We can define powers of two, positive and negative.
If you're clever, you can define many more: $\sqrt{2}, \sqrt[3]{2}, ...$.
2023-05-06 17:05:30 -07:00
\end{solution}
\vfill
\pagebreak