This commit is contained in:
Mark 2023-05-06 21:30:18 -07:00
parent 62fc066e69
commit 3b197b0759
4 changed files with 170 additions and 11 deletions

View File

@ -7,7 +7,7 @@
% Typewriter tabs
\usepackage{tabto}
\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm}
\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm, 6cm, 7cm, 8cm}
% for \coloneqq, a centered :=
\usepackage{mathtools}
@ -24,5 +24,7 @@
\input{parts/0 logic.tex}
\input{parts/1 structures.tex}
\input{parts/2 quantifiers.tex}
\input{parts/3 sets.tex}
\end{document}

View File

@ -84,7 +84,6 @@ Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, +, -, <\} \Bigr)$? \par
\pagebreak
Let us formalize what we found in the previous two problems. \par
\say{Definable elements} are one of the two most important ideas in this handout.
\definition{}
A \textit{formula} in a structure $S$ is a well-formed string of constants, functions, and relations. \par
@ -99,15 +98,6 @@ For the sake of time, I will not provide a formal definition. It isn't particula
Say $S$ is a structure over a language $\mathcal{L}$. \par
We say an element $e$ of $\mathcal{L}$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
\problem{}
Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$?
\begin{solution}
No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
We have no way to distinguish between negative and positive numbers.
\end{solution}
\vfill
\problem{}
Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par
@ -119,6 +109,18 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
\vfill
\problem{}
Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$?
\begin{solution}
No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
We have no way to distinguish between negative and positive numbers.
\end{solution}
\vfill
\problem{}
What is definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?

View File

@ -0,0 +1,72 @@
\section{Quantifiers}
Recall the logical symbols we introduced earlier: $(), \land, \lor, \lnot, \rightarrow$ \par
We will now add two more: $\forall$ (for all) and $\exists$ (exists).
\definition{}
$\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols.
\vspace{2mm}
Let's look at $\forall$ first. Let $\varphi$ be a formula. \par
Then, the formula $\forall x ~ \varphi$ says \say{$\varphi$ is true for all possible $x$.}
\vspace{1mm}
For example, take the formula $\forall x ~ (0 < x)$. \par
In english, this means \say{For any $x$, $x$ is bigger than zero,} or simply \say{Any $x$ is positive.}
\vspace{3mm}
$\exists$ is very similar: the formula $\exists x ~ \varphi$ states that there is at least one $x$ that makes $\varphi$ true. \par
For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set}.
\vspace{4mm}
\problem{}
Which of the following are true in $\mathbb{Z}$? \par
Which are true in $\mathbb{R}^+_0$? \par
\hint{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.} \par
\begin{itemize}[itemsep = 1mm]
\item $\forall x ~ (x \geq 0)$
\item $\lnot (\exists x ~ (x = 0))$
\item $\forall x ~ [\exists y ~ (y \times y = x)]$
\item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$}
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \tab~\tab \note{Solution is below.}
\end{itemize}
\begin{examplesolution}
Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
\vspace{4mm}
Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par
If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par
which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par
\vspace{4mm}
Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$
\end{examplesolution}
\vfill
\pagebreak
\problem{}
Define $\forall$ using logical symbols and $\exists$
\vfill
\problem{}
Does the order of $\forall$ and $\exists$ in a formula matter? \par
What's the difference between $\exists x ~ \forall y ~ (x < y)$ and $\forall y ~ \exists x ~ (x < y)$? \par
\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.}
\vfill
\pagebreak

View File

@ -0,0 +1,83 @@
\section{Definable Sets}
Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets.
\definition{Set-Builder Notation}
Say we have a condition $c$. \par
The set of all elements that satisfy that condition can be written as follows:
$$
\{ x ~|~ \text{$c$ is true} \}
$$
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
\definition{Definable Sets}
Let $S$ be a structure over a language $\mathcal{L}$. \par
We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
\vspace{4mm}
For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par
\vspace{2mm}
Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
Remember---we can only use symbols that are available in our structure!
\problem{}
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
\vfill
\problem{}
Define the set of rational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
\vfill
\problem{}
Define the set of irrational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
\vfill
\problem{}
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
\vfill
\problem{}
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
\vfill
\pagebreak
\problem{}
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ i, ~ \text{real}(z), \times\} \Bigr)$ \par
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
\begin{solution}
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$
\end{solution}
\vfill
\problem{}
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ \text{real}(z), \times\} \Bigr)$ \par
\begin{solution}
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(y) = 0 \rightarrow \lnot \bigl[ \text{real}(x \times y) = 0 \bigr] \Bigr) \Biggr\}$
\end{solution}
\vfill
\problem{}
Define $\mathbb{R}$ in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z), \times\} \Bigr)$ \par
\begin{solution}
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(x) \times y = \text{real}(x) \Bigr) \Biggr\}$
\end{solution}
\vfill
\pagebreak