diff --git a/Advanced/Definable Sets/main.tex b/Advanced/Definable Sets/main.tex index 992b3c6..43b96de 100755 --- a/Advanced/Definable Sets/main.tex +++ b/Advanced/Definable Sets/main.tex @@ -7,7 +7,7 @@ % Typewriter tabs \usepackage{tabto} -\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm} +\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm, 6cm, 7cm, 8cm} % for \coloneqq, a centered := \usepackage{mathtools} @@ -24,5 +24,7 @@ \input{parts/0 logic.tex} \input{parts/1 structures.tex} + \input{parts/2 quantifiers.tex} + \input{parts/3 sets.tex} \end{document} \ No newline at end of file diff --git a/Advanced/Definable Sets/parts/1 structures.tex b/Advanced/Definable Sets/parts/1 structures.tex index e0a74c9..5cc22c8 100644 --- a/Advanced/Definable Sets/parts/1 structures.tex +++ b/Advanced/Definable Sets/parts/1 structures.tex @@ -84,7 +84,6 @@ Can we define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, +, -, <\} \Bigr)$? \par \pagebreak Let us formalize what we found in the previous two problems. \par -\say{Definable elements} are one of the two most important ideas in this handout. \definition{} A \textit{formula} in a structure $S$ is a well-formed string of constants, functions, and relations. \par @@ -99,15 +98,6 @@ For the sake of time, I will not provide a formal definition. It isn't particula Say $S$ is a structure over a language $\mathcal{L}$. \par We say an element $e$ of $\mathcal{L}$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies. -\problem{} -Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$? - -\begin{solution} - No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\ - We have no way to distinguish between negative and positive numbers. -\end{solution} - -\vfill \problem{} Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par @@ -119,6 +109,18 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi \vfill + +\problem{} +Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$? + +\begin{solution} + No. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\ + We have no way to distinguish between negative and positive numbers. +\end{solution} + +\vfill + + \problem{} What is definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$? diff --git a/Advanced/Definable Sets/parts/2 quantifiers.tex b/Advanced/Definable Sets/parts/2 quantifiers.tex new file mode 100644 index 0000000..d63d8b7 --- /dev/null +++ b/Advanced/Definable Sets/parts/2 quantifiers.tex @@ -0,0 +1,72 @@ +\section{Quantifiers} + +Recall the logical symbols we introduced earlier: $(), \land, \lor, \lnot, \rightarrow$ \par +We will now add two more: $\forall$ (for all) and $\exists$ (exists). + +\definition{} +$\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. + +\vspace{2mm} + +Let's look at $\forall$ first. Let $\varphi$ be a formula. \par +Then, the formula $\forall x ~ \varphi$ says \say{$\varphi$ is true for all possible $x$.} + +\vspace{1mm} + +For example, take the formula $\forall x ~ (0 < x)$. \par +In english, this means \say{For any $x$, $x$ is bigger than zero,} or simply \say{Any $x$ is positive.} + +\vspace{3mm} + +$\exists$ is very similar: the formula $\exists x ~ \varphi$ states that there is at least one $x$ that makes $\varphi$ true. \par +For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set}. + +\vspace{4mm} + +\problem{} +Which of the following are true in $\mathbb{Z}$? \par +Which are true in $\mathbb{R}^+_0$? \par +\hint{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.} \par + +\begin{itemize}[itemsep = 1mm] + + \item $\forall x ~ (x \geq 0)$ + \item $\lnot (\exists x ~ (x = 0))$ + + \item $\forall x ~ [\exists y ~ (y \times y = x)]$ + + \item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$} + + \item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \tab~\tab \note{Solution is below.} +\end{itemize} + +\begin{examplesolution} + Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par + + \vspace{4mm} + + Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par + If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par + which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par + + \vspace{4mm} + + Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$ +\end{examplesolution} + + +\vfill +\pagebreak + +\problem{} +Define $\forall$ using logical symbols and $\exists$ + +\vfill + +\problem{} +Does the order of $\forall$ and $\exists$ in a formula matter? \par +What's the difference between $\exists x ~ \forall y ~ (x < y)$ and $\forall y ~ \exists x ~ (x < y)$? \par +\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.} + +\vfill +\pagebreak \ No newline at end of file diff --git a/Advanced/Definable Sets/parts/3 sets.tex b/Advanced/Definable Sets/parts/3 sets.tex new file mode 100644 index 0000000..bc8e747 --- /dev/null +++ b/Advanced/Definable Sets/parts/3 sets.tex @@ -0,0 +1,83 @@ +\section{Definable Sets} + +Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets. + +\definition{Set-Builder Notation} +Say we have a condition $c$. \par +The set of all elements that satisfy that condition can be written as follows: +$$ + \{ x ~|~ \text{$c$ is true} \} +$$ +This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.} + + +\definition{Definable Sets} +Let $S$ be a structure over a language $\mathcal{L}$. \par +We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$. + +\vspace{4mm} + +For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par + +\vspace{2mm} + +Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par +So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par +Remember---we can only use symbols that are available in our structure! + +\problem{} +Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ + +\vfill + +\problem{} +Define the set of rational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ + +\vfill + +\problem{} +Define the set of irrational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ + +\vfill + +\problem{} +Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$ + +\vfill + +\problem{} +Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$ + +\vfill +\pagebreak + + +\problem{} +Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ i, ~ \text{real}(z), \times\} \Bigr)$ \par +\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$} +\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$} + +\begin{solution} + $\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$ +\end{solution} + +\vfill + +\problem{} +Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ \text{real}(z), \times\} \Bigr)$ \par + +\begin{solution} + $\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(y) = 0 \rightarrow \lnot \bigl[ \text{real}(x \times y) = 0 \bigr] \Bigr) \Biggr\}$ +\end{solution} + +\vfill + +\problem{} +Define $\mathbb{R}$ in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z), \times\} \Bigr)$ \par + +\begin{solution} + $\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(x) \times y = \text{real}(x) \Bigr) \Biggr\}$ +\end{solution} + +\vfill +\pagebreak \ No newline at end of file