2023-05-06 17:05:30 -07:00
\section { Structures}
2023-05-11 14:54:18 -07:00
\definition { }
A \textit { universe} is a set of meaningless objects. Here are a few examples:
2023-05-06 17:05:30 -07:00
\begin { itemize}
\item $ \{ a, b, ..., z \} $
\item $ \{ 0 , 1 \} $
\item $ \mathbb { Z } $ , $ \mathbb { R } $ , etc.
\end { itemize}
\definition { }
2023-05-11 20:05:02 -07:00
A \textit { structure} consists of a universe $ U $ and a set of symbols. \par
2023-05-11 14:54:18 -07:00
A structure's symbols give meaning to the objects in its universe.
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
\vspace { 2mm}
2023-05-06 17:05:30 -07:00
2023-06-19 20:24:33 -07:00
Symbols come in three types:
2023-05-09 21:23:09 -07:00
\begin { itemize}
2023-05-11 14:54:18 -07:00
\item Constant symbols, which let us specify specific elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $ 0 , 1 , \frac { 1 } { 2 } , \pi $
\vspace { 2mm}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
\item Function symbols, which let us navigate between elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $ + , \times , \sin { x } , \sqrt { x } $
\vspace { 2mm}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
\item Relation symbols, which let us compare elements of our universe. \par
2023-05-09 21:23:09 -07:00
Examples: $ <, >, \leq , \geq $ \par
\vspace { 2mm}
\end { itemize}
2023-05-06 17:05:30 -07:00
2023-05-11 14:54:18 -07:00
The equality check $ = $ is \textbf { not} a relation symbol. It is included in every structure by default.
2023-05-06 17:05:30 -07:00
\vspace { 3mm}
\example { }
The first structure we'll look at is the following:
$$
2023-05-09 21:23:09 -07:00
\Bigl ( \mathbb { Z} ~\big |~ \{ 0, 1, +, -, <\} \Bigr )
2023-05-06 17:05:30 -07:00
$$
\vspace { 2mm}
2023-05-11 14:54:18 -07:00
This is a structure with the universe $ \mathbb { Z } $ that contains the following symbols:
2023-05-06 17:05:30 -07:00
\begin { itemize}
2023-05-09 21:23:09 -07:00
\item Constants: \tab $ \{ 0 , 1 \} $
\item Functions: \tab $ \{ + , - \} $
\item Relations: \tab $ \{ < \} $
2023-05-06 17:05:30 -07:00
\end { itemize}
\vspace { 2mm}
2023-07-27 18:58:45 -07:00
If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools this structure offers.
2023-05-06 17:05:30 -07:00
\vspace { 1mm}
Say we want the number 2. We could use the function $ + $ to define it: $ 2 \coloneqq [ x \text { where } 1 + 1 = x ] $ \par
We would write this as $ 2 \coloneqq [ x \text { where } + ( 1 , 1 ) = x ] $ in proper \say { functional} notation.
\problem { }
Can we define $ - 1 $ in $ \Bigl ( \mathbb { Z } ~ \big |~ \{ 0 , 1 , + , - , < \} \Bigr ) $ ? If so, how?
\vfill
\problem { }
Can we define $ - 1 $ in $ \Bigl ( \mathbb { Z } ~ \big |~ \{ 0 , + , - , < \} \Bigr ) $ ? \par
\hint { In this problem, $ 1 $ has been removed from the set of constant symbols.}
\vfill
\pagebreak
Let us formalize what we found in the previous two problems. \par
\definition { }
A \textit { formula} in a structure $ S $ is a well-formed string of constants, functions, and relations. \par
\vspace { 2mm}
You already know what a \say { well-formed} string is: $ 1 + 1 $ is fine, $ \sqrt { + } $ is nonsense. \par
For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
2023-05-11 14:54:18 -07:00
\vspace { 2mm}
A formula can contain one or more \textit { free variables.} These are denoted $ \varphi { ( a, b, ... ) } $ . \par
Formulas with free variables let us define \say { properties} that certain objects have. \par
2023-07-26 17:55:07 -07:00
For example, $ x $ is a free variable in the formula $ \varphi ( x ) = [ x > 0 ] $ . \par
2023-05-11 14:54:18 -07:00
$ \varphi ( 3 ) $ is true and $ \varphi ( - 3 ) $ is false.
2023-05-06 17:05:30 -07:00
\definition { Definable Elements}
2023-05-14 19:49:13 -07:00
Say $ S $ is a structure with a universe $ U $ . \par
2023-05-11 14:54:18 -07:00
We say an element $ e \in U $ is \textit { definable in $ S $ } if we can write a formula that only $ e $ satisfies.
2023-05-06 17:05:30 -07:00
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem { }
2023-05-06 21:30:18 -07:00
Can we define 2 in the structure $ \Bigl ( \mathbb { Z ^ + } ~ \big |~ \{ 4 , \times \} \Bigr ) $ ? \par
2023-05-14 19:49:13 -07:00
\hint { $ \mathbb { Z } ^ + = \{ 1 , 2 , 3 , ... \} $ . Also, $ 2 \times 2 = 4 $ .}
2023-05-06 17:05:30 -07:00
\begin { solution}
2023-07-26 17:55:07 -07:00
$ 2 $ is the only element in $ \mathbb { Z } ^ + $ that satisfies $ \varphi ( x ) = [ x \times x = 4 ] $ .
2023-05-06 17:05:30 -07:00
\end { solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem { }
2023-05-11 14:54:18 -07:00
Try to define 2 in the structure $ \Bigl ( \mathbb { Z } ~ \big |~ \{ 4 , \times \} \Bigr ) $ .
2023-05-06 17:05:30 -07:00
\begin { solution}
2023-07-26 17:55:07 -07:00
This isn't possible. We could try $ \varphi ( x ) = [ x \times x = 4 ] $ , but this is satisfied by both $ 2 $ and $ - 2 $ . \par
2023-05-06 21:30:18 -07:00
We have no way to distinguish between negative and positive numbers.
2023-05-14 19:49:13 -07:00
\begin { instructornote}
Actually, it is. Bonus problem: how? \par
Do this after understanding quantifiers.
\end { instructornote}
2023-05-06 17:05:30 -07:00
\end { solution}
\vfill
2023-05-06 21:30:18 -07:00
2023-05-06 17:05:30 -07:00
\problem { }
2023-05-14 19:49:13 -07:00
What numbers are definable in the structure $ \Bigl ( \mathbb { R } ^ + _ 0 ~ \big |~ \{ 1 , 2 , \div \} \Bigr ) $ ?
2023-05-06 17:05:30 -07:00
\begin { solution}
2023-05-14 19:49:13 -07:00
We can define powers of two, positive and negative.
If you're clever, you can define many more: $ \sqrt { 2 } , \sqrt [ 3 ] { 2 } , ... $ .
2023-05-06 17:05:30 -07:00
\end { solution}
\vfill
\pagebreak