Cleanup
This commit is contained in:
parent
44d7577e2f
commit
2e380a3f3b
@ -1,8 +1,9 @@
|
||||
\section{Logical Algebra}
|
||||
|
||||
\definition{}
|
||||
Odds are, you are familiar with \textit{logical symbols}. \par
|
||||
In this handout, we'll use the following:
|
||||
\textit{Logical operators} operate on the values $\{\text{True}, \text{False}\}$, \par
|
||||
just like algebraic operators operate on numbers. \par
|
||||
In this handout, we'll use the following operators:
|
||||
\begin{itemize}
|
||||
\item $\lnot$: not
|
||||
\item $\land$: and
|
||||
@ -66,11 +67,15 @@ $\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} si
|
||||
\vspace{2mm}
|
||||
|
||||
$A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par
|
||||
The only time $\rightarrow$ is false is when $T \rightarrow F$. This may seem counterintuitive, but it makes sense. Think about it. \par
|
||||
The only time $\rightarrow$ is false is when $T \rightarrow F$. This may seem counterintuitive, but it will make more sense as we progress through this handout.
|
||||
|
||||
\problem{}
|
||||
Evaluate the following.
|
||||
\begin{itemize}
|
||||
\item $\lnot T$
|
||||
\item $F \lor T$
|
||||
\item $T \land T$
|
||||
\item $(T \land F) \lor T$
|
||||
\item $(T \land F) \lor T$
|
||||
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
||||
\item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$
|
||||
@ -110,7 +115,7 @@ Evaluate the following.
|
||||
|
||||
\problem{}
|
||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||
That is, show that these give the same result for the same $A$ and $B$.
|
||||
That is, show that these give the same result for the same $A$ and $B$. \par
|
||||
\hint{Use a truth table}
|
||||
|
||||
\vfill
|
||||
|
@ -86,7 +86,7 @@ For the sake of time, I will not provide a formal definition. It isn't particula
|
||||
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
|
||||
Formulas with free variables let us define \say{properties} that certain objects have. \par
|
||||
|
||||
For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
|
||||
For example, $x$ is a free variable in the formula $\varphi(x) = [x > 0]$. \par
|
||||
$\varphi(3)$ is true and $\varphi(-3)$ is false.
|
||||
|
||||
\definition{Definable Elements}
|
||||
@ -99,7 +99,7 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
|
||||
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.}
|
||||
|
||||
\begin{solution}
|
||||
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $[x \text{ where } x \times x = 4]$.
|
||||
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $\varphi(x) = [x \times x = 4]$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -109,7 +109,7 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
|
||||
Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr)$.
|
||||
|
||||
\begin{solution}
|
||||
This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
|
||||
This isn't possible. We could try $\varphi(x) = [x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \par
|
||||
We have no way to distinguish between negative and positive numbers.
|
||||
|
||||
\begin{instructornote}
|
||||
|
@ -1,8 +1,9 @@
|
||||
\section{Equivalence (Bonus)}
|
||||
\section{Equivalence}
|
||||
|
||||
\generic{Notation:}
|
||||
Let $S$ be a structure and $\varphi$ a formula. \par
|
||||
If $\varphi$ is true in $S$, we write $S \models \varphi$.
|
||||
If $\varphi$ is true in $S$, we write $S \models \varphi$. \par
|
||||
This is read \say{$S$ satisfies $\varphi$}
|
||||
|
||||
\definition{}
|
||||
Let $S$ and $T$ be structures. \par
|
||||
|
Loading…
x
Reference in New Issue
Block a user