Set edits
This commit is contained in:
parent
0afeaa8c6d
commit
44d7577e2f
@ -1,13 +1,13 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
nosolutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
\uptitlel{Advanced 1}
|
||||
\uptitler{Summer 2023}
|
||||
\title{The Size of Sets, Part 1}
|
||||
\title{The Size of Sets}
|
||||
\subtitle{Prepared by Mark on \today{}}
|
||||
|
||||
\begin{document}
|
||||
@ -19,7 +19,8 @@
|
||||
\input{parts/2 cartesian.tex}
|
||||
\input{parts/3 functions.tex}
|
||||
\input{parts/4 enumeration.tex}
|
||||
\input{parts/dense.tex}
|
||||
%\input{parts/5 dense.tex}
|
||||
\input{parts/6 uncountable.tex}
|
||||
|
||||
|
||||
%\vfill
|
||||
@ -36,14 +37,6 @@
|
||||
% $(a, b) = \{ \{a\}, \{a, b\}\}$
|
||||
%\end{solution}
|
||||
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Let $R$ be the set of all sets that do not contain themselves. \par
|
||||
%Does $R$ exist? \par
|
||||
%\hint{If $R$ exists, do we get a contradiction?}
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
|
||||
%Provide a proof or a counterexample.
|
||||
|
@ -22,11 +22,13 @@ Note that the \say{subset} symbol resembles the \say{less than or equal to} symb
|
||||
|
||||
We can also write $\{a, b\} \subset \{a, b, c\}$, which denotes a \textit{strict subset.} \par
|
||||
The relationship between $\subseteq$ and $\subset$ is the same as the relationship between $\leq$ and $<$. \par
|
||||
In particular, if $A \subset B$, $A \subseteq B$ and $A \neq B$ \par
|
||||
For example, $\{a, b, c\} \subseteq \{a, b, c\}$ is true, but $\{a, b, c\} \subset \{a, b, c\}$ is false.
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{empty set}, usually written $\varnothing$, is the unique set containing no elements. \par
|
||||
By definition, the empty set is a subset of every set. \par
|
||||
\note[Note]{The $\varnothing$ symbol is called \say{varnothing.} If you'd like to know why, ask an instructor.}
|
||||
|
||||
\problem{}
|
||||
@ -70,6 +72,11 @@ What is the power set of $\{1, 2, 3\}$? \par
|
||||
Let $A$ be a set with $n$ elements. \par
|
||||
How many elements does $\mathcal{P}(A)$ have? \par
|
||||
\hint{Binary may help.}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the set of all sets that do not contain themselves is not a set. \par
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
@ -372,4 +372,4 @@ Intuitively, you can think of a bijection as a \say{matching} between elements o
|
||||
\definition{}
|
||||
We say two sets $A$ and $B$ are \textit{equinumerous} if there exists a bijection $f: A \to B$.
|
||||
|
||||
\pagebreak
|
||||
\pagebreak
|
@ -2,7 +2,7 @@
|
||||
|
||||
\definition{}
|
||||
Let $A$ be a set. An \textit{enumeration} is a bijection from $A$ to $\{1, 2, ..., n\}$ or $\mathbb{N}$.\par
|
||||
An enumeration assignes an element of $\mathbb{N}$ to each element of $A$.
|
||||
An enumeration assigns an element of $\mathbb{N}$ to each element of $A$.
|
||||
|
||||
\definition{}
|
||||
We say a set is \textit{countable} if it has an enumeration.\par
|
||||
@ -31,16 +31,21 @@ Show that $A$ is countable iff $B$ is countable.
|
||||
Show that $\mathbb{Z}$ is countable.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
\problem{}<naturaltwo>
|
||||
Show that $\mathbb{N}^2$ is countable.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $\mathbb{Q}$ is countable.
|
||||
\vfill
|
||||
|
||||
\problem{}<naturalk>
|
||||
Show that $\mathbb{N}^k$ is countable.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that if $A$ and $B$ are countable, $A \cup B$ is also countable.
|
||||
Show that if $A$ and $B$ are countable, $A \cup B$ is also countable.\par
|
||||
\note{Note that this automatically solves \ref{naturaltwo} and \ref{naturalk}.}
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
@ -1,4 +1,4 @@
|
||||
\section*{Bonus: Dense Orderings}
|
||||
\section{Dense Orderings}
|
||||
|
||||
\definition{}
|
||||
An \textit{ordered set} is a set with an \say{order} attached to it. \par
|
74
Advanced/Size of Sets/parts/6 uncountable.tex
Normal file
74
Advanced/Size of Sets/parts/6 uncountable.tex
Normal file
@ -0,0 +1,74 @@
|
||||
\section*{Uncountable Sets}
|
||||
|
||||
\problem{}<binarystrings>
|
||||
Let $B$ be the set of infinite binary strings. Show that $B$ is not countable. \par
|
||||
Here's how you should start:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Assume we have some enumeration $n(b)$ that assigns a natural number to every $b \in B$.\par
|
||||
Now, arrange the elements of $B$ in a table, in order of increasing index: \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node at (0, 0) {$n(b)$};
|
||||
\node at (4.5, 0) {digits of $b$};
|
||||
|
||||
% Vertical lines
|
||||
\draw (1, 0.5) -- (1, -8);
|
||||
\draw (-1, 0.5) -- (-1, -8);
|
||||
|
||||
% Horizontal title
|
||||
\draw (-1, -0.5) -- (8, -0.5);
|
||||
|
||||
\foreach \i/\j in {
|
||||
0/1010100110011110,
|
||||
1/0101101011010010,
|
||||
2/1101011001010101,
|
||||
3/0001100101010110,
|
||||
4/1101011101000110,
|
||||
5/1101100010100111,
|
||||
6/1011001101001010%
|
||||
} {
|
||||
\node at (0, -\i-1) {$\i$};
|
||||
\draw (-1, -1.5 - \i) -- (8, -1.5 - \i);
|
||||
\node[anchor=west] at (1, -\i-1) {\texttt{\j}...};
|
||||
}
|
||||
|
||||
\node at (0, -7-1) {...};
|
||||
\node at (4.5, -7-1) {.....};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
First, convince yourself that if $B$ is countable, this table will contain every element of $B$, \par
|
||||
then construct a new element of $B$ that is guaranteed to \textit{not} be in this table.\par
|
||||
\hint{What should the first digit of this new string be? What should its second digit be? \\
|
||||
Or, even better, what \textit{shouldn't} they be?}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Using \ref{binarystrings}, show that $\mathcal{P}(\mathbb{N})$ is uncountable.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that $\mathbb{R}$ is not countable. \par
|
||||
\hint{Earlier in this handout, we defined a real number as \say{a decimal, finite or infinite.}}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a bijection from $(0, 1)$ to $\mathbb{R}$.\par
|
||||
\hint{$(0, 1)$ is the set of all real numbers between 0 and 1, not including either endpoint.}
|
||||
\vspace{2mm}
|
||||
This problem brings us to the surprising conclusion that there are \say{just as many} numbers between 0 and 1 as there are in the entire real line.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a bijection between $(0, 1)$ and $[0, 1]$. \par
|
||||
\hint{$[0, 1]$ is the set of all real numbers between 0 and 1, including both endpoints.}
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user