Post-class edits

This commit is contained in:
Mark 2023-05-14 19:49:13 -07:00
parent e3fd62c791
commit 47de89c2c4
4 changed files with 52 additions and 38 deletions

View File

@ -5,10 +5,6 @@
singlenumbering
]{../../resources/ormc_handout}
% Typewriter tabs
\usepackage{tabto}
\TabPositions{1cm, 2cm, 3cm, 4cm, 5cm, 6cm, 7cm, 8cm}
% for \coloneqq, a centered :=
\usepackage{mathtools}

View File

@ -90,16 +90,16 @@ For example, $x$ is a free variable in the formula $\varphi(x) = x > 0$. \par
$\varphi(3)$ is true and $\varphi(-3)$ is false.
\definition{Definable Elements}
Say $S$ is a with a universe $U$. \par
Say $S$ is a structure with a universe $U$. \par
We say an element $e \in U$ is \textit{definable in $S$} if we can write a formula that only $e$ satisfies.
\problem{}
Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bigr)$? \par
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.}
\begin{solution}
$-2 \notin \mathbb{Z}^+$, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
$2$ is the only element in $\mathbb{Z}^+$ that satisfies $[x \text{ where } x \times x = 4]$.
\end{solution}
\vfill
@ -111,16 +111,23 @@ Try to define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr
\begin{solution}
This isn't possible. We could try $[x \text{ where } x \times x = 4]$, but this is satisfied by both $2$ and $-2$. \\
We have no way to distinguish between negative and positive numbers.
\begin{instructornote}
Actually, it is. Bonus problem: how? \par
Do this after understanding quantifiers.
\end{instructornote}
\end{solution}
\vfill
\problem{}
What numbers are definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
What numbers are definable in the structure $\Bigl( \mathbb{R}^+_0 ~\big|~ \{1, 2, \div \} \Bigr)$?
\begin{solution}
With the tools we have so far, we can only define powers of two, positive and negative.
We can define powers of two, positive and negative.
If you're clever, you can define many more: $\sqrt{2}, \sqrt[3]{2}, ...$.
\end{solution}
\vfill

View File

@ -37,22 +37,22 @@ Which are true in $\mathbb{R}^+_0$? \par
\item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$}
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \tab~\tab \note{Solution is below.}
\item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ %\tab~\tab \note{Solution is below.}
\end{itemize}
\begin{examplesolution}
Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
\vspace{4mm}
Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par
If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par
which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par
\vspace{4mm}
Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$
\end{examplesolution}
%\begin{examplesolution}
% Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par
%
% \vspace{4mm}
%
% Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par
% If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par
% which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par
%
% \vspace{4mm}
%
% Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$
%\end{examplesolution}
\vfill

View File

@ -32,21 +32,28 @@ Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \p
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
Remember---we can only use symbols that are available in our structure!
\problem{}
Is the empty set definable in any structure?
\vfill
\problem{}
Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
\begin{instructornote}
Here's an interesting fact:
A finite set of definable elements is always definable. Why? \par
An infinite set of definable elements may not be definable.
\end{instructornote}
\vfill
\problem{}
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
\vfill
\problem{}
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
\vfill
\problem{}
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
\vfill
\pagebreak
@ -84,7 +91,9 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
\vfill
\problem{}
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par
\hint{We can't formally define a relation yet. Don't worry about that for now. \\
You can repharase this question as \say{given $a,b \in \mathbb{Z}$, can you write a sentence that is true iff $a < b$?}}
\vfill
\pagebreak
@ -94,7 +103,7 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
The relation $a \diamond b$ holds if $| a - b | = 1$
\problempart{}
Define the empty set in $S$.
Define 0 in $S$.
\problempart{}
Define $\{-1, 1\}$ in $S$.
@ -106,10 +115,12 @@ Define $\{-2, 2\}$ in $S$.
\problem{}
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
Let $S$ be the stucture $( P ~|~ \{\subseteq\} )$ \par
Let $S$ be the stucture $( P ~|~ \{\subseteq\})$ \par
\problempart{}
Show that the empty set is definable in $S$.
Show that the empty set is definable in $S$. \par
\hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\
We need $\varnothing \in P$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
\problempart{}
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par