Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
commit
a536a31f2a
@ -16,6 +16,10 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
||||
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
||||
@ -52,6 +56,10 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
||||
|
||||
@ -63,11 +71,13 @@
|
||||
a proof.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par
|
||||
What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim.
|
||||
@ -77,6 +87,24 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that there are infinitely may primes. \par
|
||||
You may use the fact that every integer has a prime factorization.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$.
|
||||
|
||||
@ -100,11 +128,33 @@
|
||||
Friendship is always mutual.
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $f$ be a function from a set $X$ to a set $Y$. We say $f$ is \textit{injective} if $f(x) = f(y) \implies x = y$. \par
|
||||
We say $f$ is \textit{surjective} if for all $y \in Y$ there exists an $x \in X$ so that $f(x) = y$. \par
|
||||
Let $A, B, C$ be sets, and let $f: A \to B$, $g: B \to C$ be functions. Let $h = g \circ f$.
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{itemize}
|
||||
\item Show that if $h$ is injective, $f$ must be injective and $g$ may not be injective.
|
||||
\item Show that if $h$ is surjective, $g$ must be surjective and $f$ may not be surjective.
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $X = \{1, 2, ..., n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n - 1$. \par
|
||||
Let $E = \{Y \subset X ~\bigl|~ |Y| = k\}$, $E_1 = \{Y \in E ~\bigl|~ 1 \in Y\}$, and $E_2 = \{Y \in E ~\bigl|~ 1 \notin Y\}$
|
||||
@ -131,6 +181,11 @@
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $x, y \in \mathbb{N}$ be natural numbers.
|
||||
Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par
|
||||
@ -148,6 +203,10 @@
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
|
||||
\begin{itemize}[itemsep=4mm]
|
||||
@ -171,6 +230,11 @@
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
In this problem we prove the binomial theorem:
|
||||
for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}, we have
|
||||
@ -198,6 +262,8 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
A \textit{relation} on a set $X$ is an $R \subset X \times X$. \par
|
||||
\begin{itemize}
|
||||
@ -215,4 +281,7 @@
|
||||
Let $R$ be an equivalence relation on a set $X$. \par
|
||||
Show that the set of equivalence classes is a partition of $X$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user