Added a problem
This commit is contained in:
		| @ -16,6 +16,10 @@ | ||||
|  | ||||
| 	\maketitle | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$. | ||||
| 	We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par | ||||
| @ -53,6 +57,9 @@ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ | ||||
| 	 | ||||
| @ -82,6 +89,22 @@ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Show that there are infinitely may primes. \par | ||||
| 	You may use the fact that every integer has a prime factorization. | ||||
|  | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$. | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user