diff --git a/Advanced/Intro to Proofs/main.tex b/Advanced/Intro to Proofs/main.tex index c6d05ea..126d59b 100755 --- a/Advanced/Intro to Proofs/main.tex +++ b/Advanced/Intro to Proofs/main.tex @@ -16,6 +16,10 @@ \maketitle + + + + \problem{} We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$. We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par @@ -53,6 +57,9 @@ + + + \problem{} Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ @@ -82,6 +89,22 @@ + + + + + \problem{} + Show that there are infinitely may primes. \par + You may use the fact that every integer has a prime factorization. + + + \vfill + \pagebreak + + + + + \problem{} For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$.