Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
		| @ -16,6 +16,10 @@ | ||||
|  | ||||
| 	\maketitle | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$. | ||||
| 	We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par | ||||
| @ -52,6 +56,10 @@ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ | ||||
| 	 | ||||
| @ -63,11 +71,13 @@ | ||||
| 		a proof. | ||||
| 	\end{itemize} | ||||
|  | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par | ||||
| 	What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim. | ||||
| @ -77,6 +87,24 @@ | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Show that there are infinitely may primes. \par | ||||
| 	You may use the fact that every integer has a prime factorization. | ||||
|  | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$. | ||||
|  | ||||
| @ -100,11 +128,33 @@ | ||||
| 		Friendship is always mutual. | ||||
| 	\end{itemize} | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $f$ be a function from a set $X$ to a set $Y$. We say $f$ is \textit{injective} if $f(x) = f(y) \implies x = y$. \par | ||||
| 	We say $f$ is \textit{surjective} if for all $y \in Y$ there exists an $x \in X$ so that $f(x) = y$. \par | ||||
| 	Let $A, B, C$ be sets, and let $f: A \to B$, $g: B \to C$ be functions. Let $h = g \circ f$. | ||||
|  | ||||
| 	\vspace{2mm} | ||||
| 	\begin{itemize} | ||||
| 		\item Show that if $h$ is injective, $f$ must be injective and $g$ may not be injective. | ||||
| 		\item Show that if $h$ is surjective, $g$ must be surjective and $f$ may not be surjective. | ||||
| 	\end{itemize} | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $X = \{1, 2, ..., n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n - 1$. \par | ||||
| 	Let $E = \{Y \subset X ~\bigl|~ |Y| = k\}$, $E_1 = \{Y \in E ~\bigl|~ 1 \in Y\}$, and $E_2 = \{Y \in E ~\bigl|~ 1 \notin Y\}$ | ||||
| @ -131,6 +181,11 @@ | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	Let $x, y \in \mathbb{N}$ be natural numbers. | ||||
| 	Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par | ||||
| @ -148,6 +203,10 @@ | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	 | ||||
| 	\begin{itemize}[itemsep=4mm] | ||||
| @ -171,6 +230,11 @@ | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| 	In this problem we prove the binomial theorem: | ||||
| 	for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}, we have | ||||
| @ -196,6 +260,8 @@ | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
| 	 | ||||
|  | ||||
|  | ||||
|  | ||||
| 	\problem{} | ||||
| @ -215,4 +281,7 @@ | ||||
| 	Let $R$ be an equivalence relation on a set $X$. \par | ||||
| 	Show that the set of equivalence classes is a partition of $X$. | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user