diff --git a/Advanced/Intro to Proofs/main.tex b/Advanced/Intro to Proofs/main.tex index 943f9a9..126d59b 100755 --- a/Advanced/Intro to Proofs/main.tex +++ b/Advanced/Intro to Proofs/main.tex @@ -16,6 +16,10 @@ \maketitle + + + + \problem{} We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$. We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par @@ -52,6 +56,10 @@ + + + + \problem{} Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ @@ -63,11 +71,13 @@ a proof. \end{itemize} - \vfill \pagebreak + + + \problem{} Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim. @@ -77,6 +87,24 @@ + + + + + + + \problem{} + Show that there are infinitely may primes. \par + You may use the fact that every integer has a prime factorization. + + + \vfill + \pagebreak + + + + + \problem{} For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$. @@ -100,11 +128,33 @@ Friendship is always mutual. \end{itemize} + \vfill + \pagebreak + + + + + + + \problem{} + Let $f$ be a function from a set $X$ to a set $Y$. We say $f$ is \textit{injective} if $f(x) = f(y) \implies x = y$. \par + We say $f$ is \textit{surjective} if for all $y \in Y$ there exists an $x \in X$ so that $f(x) = y$. \par + Let $A, B, C$ be sets, and let $f: A \to B$, $g: B \to C$ be functions. Let $h = g \circ f$. + + \vspace{2mm} + \begin{itemize} + \item Show that if $h$ is injective, $f$ must be injective and $g$ may not be injective. + \item Show that if $h$ is surjective, $g$ must be surjective and $f$ may not be surjective. + \end{itemize} \vfill \pagebreak + + + + \problem{} Let $X = \{1, 2, ..., n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n - 1$. \par Let $E = \{Y \subset X ~\bigl|~ |Y| = k\}$, $E_1 = \{Y \in E ~\bigl|~ 1 \in Y\}$, and $E_2 = \{Y \in E ~\bigl|~ 1 \notin Y\}$ @@ -131,6 +181,11 @@ \vfill \pagebreak + + + + + \problem{} Let $x, y \in \mathbb{N}$ be natural numbers. Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par @@ -148,6 +203,10 @@ \vfill \pagebreak + + + + \problem{} \begin{itemize}[itemsep=4mm] @@ -171,6 +230,11 @@ \vfill \pagebreak + + + + + \problem{} In this problem we prove the binomial theorem: for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}, we have @@ -196,6 +260,8 @@ \vfill \pagebreak + + \problem{} @@ -215,4 +281,7 @@ Let $R$ be an equivalence relation on a set $X$. \par Show that the set of equivalence classes is a partition of $X$. + \vfill + \pagebreak + \end{document} \ No newline at end of file