56 lines
1.2 KiB
TeX
Raw Normal View History

2023-07-18 10:11:04 -07:00
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
2023-11-07 20:36:21 -08:00
solutions,
2023-07-18 10:11:04 -07:00
singlenumbering
]{../../resources/ormc_handout}
2023-10-17 18:32:10 -07:00
\usepackage{../../resources/macros}
2023-07-18 10:11:04 -07:00
\uptitlel{Advanced 1}
2024-04-01 21:50:50 -07:00
\uptitler{\smallurl{}}
2023-07-20 21:19:17 -07:00
\title{The Size of Sets}
2024-04-01 21:50:50 -07:00
\subtitle{Prepared by Mark on \today{}}
2023-07-18 10:11:04 -07:00
\begin{document}
\maketitle
\input{parts/0 sets.tex}
\input{parts/1 really big.tex}
\input{parts/2 cartesian.tex}
\input{parts/3 functions.tex}
2023-07-19 09:55:30 -07:00
\input{parts/4 enumeration.tex}
2023-07-20 21:19:17 -07:00
%\input{parts/5 dense.tex}
\input{parts/6 uncountable.tex}
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\vfill
%\pagebreak
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\section{Bonus Problems}
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\problem{}
%Using only sets, how can we build an ordered pair $(a, b)$? \par
%$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
%Of course, $(a, b) \neq (b, a)$.
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\begin{solution}
% $(a, b) = \{ \{a\}, \{a, b\}\}$
%\end{solution}
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\problem{}
%Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
%Provide a proof or a counterexample.
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\vfill
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\problem{}
%Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
%Provide a proof or a counterexample.
2023-07-18 10:11:04 -07:00
2023-07-19 09:55:30 -07:00
%\vfill
%\pagebreak
2023-07-18 10:11:04 -07:00
\end{document}