61 lines
1.3 KiB
TeX
Raw Normal View History

2023-07-18 10:11:04 -07:00
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
solutions,
singlenumbering
]{../../resources/ormc_handout}
\uptitlel{Advanced 1}
\uptitler{Summer 2023}
\title{The Size of Sets, Part 1}
\subtitle{Prepared by Mark on \today{}}
\begin{document}
\maketitle
\input{parts/0 sets.tex}
\input{parts/1 really big.tex}
\input{parts/2 cartesian.tex}
\input{parts/3 functions.tex}
\input{parts/4 dense.tex}
\vfill
\pagebreak
\section{Bonus Problems}
\problem{}
Using only sets, how can we build an ordered pair $(a, b)$? \par
$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par
Of course, $(a, b) \neq (b, a)$.
\begin{solution}
$(a, b) = \{ \{a\}, \{a, b\}\}$
\end{solution}
\vfill
\problem{}
Let $R$ be the set of all sets that do not contain themselves. \par
Does $R$ exist? \par
\hint{If $R$ exists, do we get a contradiction?}
\vfill
\problem{}
Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par
Provide a proof or a counterexample.
\vfill
\problem{}
Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par
Provide a proof or a counterexample.
\vfill
\pagebreak
\end{document}