% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, singlenumbering ]{../../resources/ormc_handout} \usepackage{../../resources/macros} \uptitlel{Advanced 1} \uptitler{\smallurl{}} \title{The Size of Sets} \subtitle{Prepared by Mark on \today{}} \begin{document} \maketitle \input{parts/0 sets.tex} \input{parts/1 really big.tex} \input{parts/2 cartesian.tex} \input{parts/3 functions.tex} \input{parts/4 enumeration.tex} %\input{parts/5 dense.tex} \input{parts/6 uncountable.tex} %\vfill %\pagebreak %\section{Bonus Problems} %\problem{} %Using only sets, how can we build an ordered pair $(a, b)$? \par %$(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par %Of course, $(a, b) \neq (b, a)$. %\begin{solution} % $(a, b) = \{ \{a\}, \{a, b\}\}$ %\end{solution} %\problem{} %Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par %Provide a proof or a counterexample. %\vfill %\problem{} %Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par %Provide a proof or a counterexample. %\vfill %\pagebreak \end{document}