2023-01-19 20:37:46 -08:00
\section { Isomorphisms}
2023-01-19 11:58:53 -08:00
\definition { }
2023-01-19 20:37:46 -08:00
We say two groups are \textit { isomorphic} if we can create a bijective mapping between them while preserving multiplication structure. This mapping is called an \textit { isomorphism} .\\
\vspace { 2mm}
This means that if groups $ A $ and $ B $ are isomorphic under $ f $ , \\
$ a _ 1 \ast a _ 2 = a _ 3 $ in A implies that $ f ( a _ 1 ) \ast f ( a _ 2 ) = f ( a _ 3 ) $ in B.
2023-01-19 11:58:53 -08:00
\problem { }
Recall your tables from \ref { modtables} : \\
\begin { center}
\begin { tabular} { c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end { tabular}
\hspace { 1cm}
\begin { tabular} { c | c c c c}
2023-02-25 23:13:13 -08:00
$ \times $ & 1 & 2 & 3 & 4 \\
2023-01-19 11:58:53 -08:00
\hline
2023-01-19 20:37:46 -08:00
1 & 1 & 2 & 3 & 4 \\
2 & 2 & 4 & 1 & 3 \\
3 & 3 & 1 & 4 & 2 \\
4 & 4 & 3 & 2 & 1 \\
2023-01-19 11:58:53 -08:00
\end { tabular}
\end { center}
2023-01-19 20:37:46 -08:00
Are $ ( \mathbb { Z } _ 4 , + ) $ and $ ( \mathbb { Z } _ 5 ^ \times , \times ) $ isomorphic? If they are, find a bijection that maps one to the other.
2023-01-19 11:58:53 -08:00
\vfill
\problem { }
2023-01-19 20:37:46 -08:00
Let groups $ A $ and $ B $ be isomorphic under $ f $ . Show that $ f ( e _ A ) = e _ B $ , where $ e _ A $ and $ e _ B $ are the identities of $ A $ and $ B $ .
2023-01-19 11:58:53 -08:00
\vfill
\problem { }
2023-01-19 20:37:46 -08:00
Let groups $ A $ and $ B $ be isomorphic under $ f $ . \\
2023-01-19 11:58:53 -08:00
Show that $ f ( a ^ { - 1 } ) = f ( a ) ^ { - 1 } $ for all $ a \in A $ .
\vfill
\problem { }
2023-01-19 20:37:46 -08:00
Let groups $ A $ and $ B $ be isomorphic under $ f $ . Show that $ f ( a ) $ and $ a $ have the same order.
2023-01-19 11:58:53 -08:00
\vfill
\pagebreak
2023-01-19 20:37:46 -08:00
\problem { } <howmanygroups>
2023-01-19 11:58:53 -08:00
Find all distinct groups of two elements. \\
Find all distinct groups of three elements. \\
Groups that are isomorphic are not distinct.
2023-01-19 20:37:46 -08:00
\begin { solution}
There is only one nonisomorphic two-element group. \\
The same is true of a three-element group. \\
See \texttt { https://oeis.org/A000001} , titled \say { Number of groups of order n}
\end { solution}
2023-01-19 11:58:53 -08:00
\vfill
\problem { }
2023-01-19 20:37:46 -08:00
Show that the groups $ ( \mathbb { R } , + ) $ and $ ( \mathbb { R } ^ + , \times ) $ are isomorphic.
2023-01-19 11:58:53 -08:00
\vfill
\pagebreak