Added group theory parts

This commit is contained in:
Mark 2023-01-19 11:58:53 -08:00
parent 284107ab48
commit 7bad77dcd9
4 changed files with 166 additions and 38 deletions

View File

@ -13,12 +13,13 @@
<Fall 2022>
{Group Theory}
{
Based on a lesson by Janet Chen \\
Prepared by Mark on \today
}
\input{parts/00 review}
\input{parts/01 groups}
\input{parts/02 isomorphism}
\input{parts/03 bonus}
\end{document}

View File

@ -7,8 +7,8 @@ A group must have the following properties: \\
\begin{enumerate}
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$
\item There is an \textit{identity} $\overline{0} \in G$, so that $a \ast \overline{0} = a$ for all $a \in G$.
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = \overline{0}$. $b$ is called the \textit{inverse} of $a$. \\
\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = b \ast a = e$. $b$ is called the \textit{inverse} of $a$. \\
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
\end{enumerate}
@ -59,6 +59,11 @@ Is $(G, \circ)$ a group?
\vfill
\pagebreak
\problem{}
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
\vfill
\problem{}
Show that a group has exactly one identity element.
\vfill
@ -67,6 +72,18 @@ Show that a group has exactly one identity element.
Show that each element in a group has exactly one inverse.
\vfill
\problem{}
Show that...
\begin{itemize}
\item $e^{-1} = 1$
\item $(a^{-1})^{-1} = a$
\end{itemize}
\vfill
\problem{}
Show that $(a^m)^{-1} = (a^{-1})^m$ for all $a \in G$ and $m \in \mathbb{Z}$.
\vfill
\problem{}
Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
\begin{itemize}
@ -75,15 +92,16 @@ Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
\end{itemize}
What does this mean intuitively?
\vfill
\pagebreak
\problem{}
Let $(G, \ast)$ be a finite group (i.e, $G$ has finitely many elements), and let $g \in G$. \\
Show that $\exists~n \in Z^+$ so that $g^n = \overline{0}$ \\
Show that $\exists~n \in Z^+$ so that $g^n = e$ \\
\hint{$g^n = g \ast g \ast ... \ast g$ $n$ times.}
\vspace{2mm}
The smallest such $n$ defines the \textit{order} of $(G, \ast)$.
The smallest such $n$ defines the \textit{order} of $g$.
\vfill
@ -92,42 +110,48 @@ What is the order of 5 in $(\mathbb{Z}/25, +)$? \\
What is the order of 2 in $((\mathbb{Z}/17)^\times, \times)$? \\
\vfill
\pagebreak
\problem{}
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
Let $e, a, b, c$ be counterclockwise rotations of a square by $0, \frac{\pi}{2}, \pi,$ and $\frac{3\pi}{2}$. \\
Create a multiplication table for this group.
\vfill
\problem{}
Let $d, f, g, h$ correspond to reflections of the square along the following axis. \\
Create a multiplication table for this group.
\begin{center}
\begin{tikzpicture}[scale=2]
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
\draw[gray] (1.25,1.25) -- (-0.25,-0.25) node[below left]{$d$};
\draw[gray] (1.25,-0.25) -- (-0.25,1.25) node[above left]{$f$};
\draw[gray] (0.5,-0.25) -- (0.5,1.25) node[above]{$g$};
\draw[gray] (-0.25, 0.5) -- (1.25,0.5) node[right]{$h$};
\end{tikzpicture}
\end{center}
\vfill
\problem{}
Create a multiplication table for all symmetries of a square.
\vfill
\pagebreak
\problem{}
Create a multiplication table for all symmetries of a rhombus.
\vfill
\pagebreak
\problem{}
Find the order of each element in...
\begin{itemize}
\item The group of symmetries of a square
\item The group of symmetries of a rhombus
\end{itemize}
\vfill
\pagebreak
\definition{}
Recall your tables from \ref{modtables}: \\
\begin{center}
\begin{tabular}{c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{tabular}
\hspace{1cm}
\begin{tabular}{c | c c c c}
\times & 1 & 2 & 3 & 4 \\
\hline
1 & 1 & 2 & 4 & 3 \\
2 & 2 & 4 & 3 & 1 \\
3 & 4 & 3 & 1 & 2 \\
4 & 3 & 1 & 2 & 4 \\
\end{tabular}
\end{center}
Look at these tables and convince yourself that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ are the same group. \\
We say that two such groups are \textit{isomorphic}.
\vspace{2mm}
Intuitively, this means that these two groups have the same algebraic structure. We can translate statements about addition in $\mathbb{Z}/4$ into statements about multiplication in $(\mathbb{Z}/5)^\times$ \\
\pagebreak

View File

@ -0,0 +1,56 @@
\section{Isomorphism}
\definition{}
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them.
\problem{}
Recall your tables from \ref{modtables}: \\
\begin{center}
\begin{tabular}{c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{tabular}
\hspace{1cm}
\begin{tabular}{c | c c c c}
\times & 1 & 2 & 3 & 4 \\
\hline
1 & 1 & 2 & 4 & 3 \\
2 & 2 & 4 & 3 & 1 \\
3 & 4 & 3 & 1 & 2 \\
4 & 3 & 1 & 2 & 4 \\
\end{tabular}
\end{center}
Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\
Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order.
\vfill
\pagebreak
\problem{}
Find all distinct groups of two elements. \\
Find all distinct groups of three elements. \\
Groups that are isomorphic are not distinct.
\vfill
\problem{}
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic.
\vfill
\pagebreak

View File

@ -0,0 +1,47 @@
\section{Bonus}
\problem{}
Find the inverse of 19 in $\mathbb{Z}/23$ \\
\hint{Recall the Euclidian Algorithm}
\begin{solution}
17
\end{solution}
\vfill
\problem{}
Prove Lagrange's theorem:
$$
a^p = a \text{ (mod p)}
$$
\vfill
\problem{}
Show that $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\
\begin{solution}
Assume $a^\star$ is the inverse of $a \pmod{m}$. \\
Then $a^\star \times a \equiv 1 \pmod{m}$ \\
Therefore, $aa^\star - 1 = km$, and $aa^\star - km = 1$ \\
We know that $\gcd(a, m)$ divides $a$ and $m$, therefore $\gcd(a, m)$ must divide $1$. \\
$\gcd(a, m) = 1$ \\
Now, assume $\gcd(a, m) = 1$. \\
By the Extended Euclidean Algorithm, we can find $(u, v)$ that satisfy $au+mv=1$ \\
So, $au-1 = mv$. \\
$m$ divides $au-1$, so $au \equiv 1 \pmod{m}$ \\
$u$ is $a^\star$.
\end{solution}
\vfill
\problem{}
Show that for any integers $a, b, c$, \\
$\gcd(ac + b, a) = \gcd(a, b)$\\
\vfill