handouts/Advanced/Group Theory/parts/02 isomorphism.tex

56 lines
1.4 KiB
TeX
Raw Normal View History

2023-01-19 11:58:53 -08:00
\section{Isomorphism}
\definition{}
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them.
\problem{}
Recall your tables from \ref{modtables}: \\
\begin{center}
\begin{tabular}{c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{tabular}
\hspace{1cm}
\begin{tabular}{c | c c c c}
\times & 1 & 2 & 3 & 4 \\
\hline
1 & 1 & 2 & 4 & 3 \\
2 & 2 & 4 & 3 & 1 \\
3 & 4 & 3 & 1 & 2 \\
4 & 3 & 1 & 2 & 4 \\
\end{tabular}
\end{center}
Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\
Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$.
\vfill
\problem{}
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order.
\vfill
\pagebreak
\problem{}
Find all distinct groups of two elements. \\
Find all distinct groups of three elements. \\
Groups that are isomorphic are not distinct.
\vfill
\problem{}
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic.
\vfill
\pagebreak