\section{Isomorphism} \definition{} We say two groups are \textit{isomorphic} if we can create a bijective mapping between them. \problem{} Recall your tables from \ref{modtables}: \\ \begin{center} \begin{tabular}{c | c c c c} + & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 \\ 2 & 2 & 3 & 0 & 1 \\ 3 & 3 & 0 & 1 & 2 \\ \end{tabular} \hspace{1cm} \begin{tabular}{c | c c c c} \times & 1 & 2 & 3 & 4 \\ \hline 1 & 1 & 2 & 4 & 3 \\ 2 & 2 & 4 & 3 & 1 \\ 3 & 4 & 3 & 1 & 2 \\ 4 & 3 & 1 & 2 & 4 \\ \end{tabular} \end{center} Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other. \vfill \problem{} Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$. \vfill \problem{} Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\ Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$. \vfill \problem{} Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order. \vfill \pagebreak \problem{} Find all distinct groups of two elements. \\ Find all distinct groups of three elements. \\ Groups that are isomorphic are not distinct. \vfill \problem{} Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic. \vfill \pagebreak