Edits to group theory handout
This commit is contained in:
parent
7bad77dcd9
commit
e506eb926d
@ -1,18 +1,18 @@
|
||||
\section{Review: Functions}
|
||||
\section{A Review of Functions}
|
||||
|
||||
\definition{}
|
||||
A \textit{function} or \textit{map} $f$ from a set $A$ (the \textit{domain}, $\mathcal{D}$) to a set $B$ (the \textit{range}, $\mathcal{R}$) is a rule that assigns each element of $A$ to an element of $B$. We write this as $f: A \to B$.
|
||||
A \textit{function} or \textit{map} $f$ from a set $A$ (the \textit{domain}, $\mathcal{D}$) to a set $B$ (the \textit{range}, $\mathcal{R}$) is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Consider a function $f: \mathbb{Z} \to \mathbb{Z}$. If $f(1) = 2$, we say that 2 is the \textit{image} of 1 and 1 is the \textit{preimage} of 2 under $f$.
|
||||
Consider a function $f: \mathbb{Z} \to \mathbb{Z}$. If $f(1) = 2$, we say that 2 is the \textit{image} of 1 and 1 is a \textit{preimage} of 2 under $f$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An element in a function's domain must have exactly one image. However, an element in the range may have more than one preimage.
|
||||
|
||||
\problem{}
|
||||
Consider the function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = x^2$
|
||||
Consider the function $f: \mathbb{R} \to \mathbb{R}^+ \cap \{0\}$ defined by $f(x) = x^2$
|
||||
\begin{itemize}
|
||||
\item[-] What is the image of 2?
|
||||
\item[-] What are the preimages of 9?
|
||||
@ -21,7 +21,7 @@ Consider the function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = x^2$
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
We say a map is \textit{one-to-one} if $a \neq b \implies f(a) \neq f(b)$. In other words, this means that each element of the range has at most one preimage.
|
||||
We say a map is \textit{one-to-one} if $a = b \implies f(a) = f(b)$ for all $a, b$ in the domain. In other words, this means that each element of the range has at most one preimage.
|
||||
|
||||
\definition{}
|
||||
We say a map $f$ is \textit{onto} if, for every $y \in \mathcal{R}$, there exists an $x \in \mathcal{D}$ so that $f(x) = y$. In other words, this means that every $y$ in the range has a preimage in the domain.
|
||||
@ -29,7 +29,7 @@ We say a map $f$ is \textit{onto} if, for every $y \in \mathcal{R}$, there exist
|
||||
\problem{}
|
||||
Find a function that is...
|
||||
\begin{enumerate}
|
||||
\item[-] not one-to-one, not onto
|
||||
\item[-] neither one-to-one nor onto
|
||||
\item[-] one-to-one and not onto
|
||||
\item[-] not one-to-one, but onto
|
||||
\item[-] both one-to-one and onto
|
||||
@ -53,24 +53,28 @@ Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $(g \circ f)$ be onto?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\section{Review: Modular Arithmetic}
|
||||
|
||||
|
||||
|
||||
|
||||
\section{A Review of Modular Arithmetic}
|
||||
|
||||
\definition{}
|
||||
$\mathbb{Z} / n$ is the set of integers mod $n$. For example, $Z/5 = \{0, 1, 2, 3, 4\}$. \\
|
||||
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \\
|
||||
You should all be familiar with modular arithmetic.
|
||||
|
||||
\definition{}
|
||||
The inverse of an element $a$ in $\mathbb{Z}/n$ is a $b$ so that $a \times b \equiv 1$. \\
|
||||
The inverse of an element $a$ in $\mathbb{Z}_n$ is a $b$ so that $a \times b \equiv 1$. \\
|
||||
|
||||
Not all elements of $\mathbb{Z}/n$ have an inverse. Those that do are called \textit{units}. \\
|
||||
Not all elements of $\mathbb{Z}_n$ have an inverse. Those that do are called \textit{units}. \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The set of all units in $\mathbb{Z}/n$ is written $(\mathbb{Z}/n)^\times$ \\
|
||||
The set of all units in $\mathbb{Z}_n$ is written $(\mathbb{Z}_n)^\times$ \\
|
||||
Read this as \say{$\mathbb{Z}$ mod $n$ cross}
|
||||
|
||||
\problem{}
|
||||
What are the elements of $(\mathbb{Z}/5)^\times$?
|
||||
What are the elements of $(\mathbb{Z}_5)^\times$?
|
||||
|
||||
\begin{solution}
|
||||
$\{1, 2, 3, 4\}$
|
||||
@ -79,7 +83,7 @@ What are the elements of $(\mathbb{Z}/5)^\times$?
|
||||
\vfill
|
||||
|
||||
\problem{}<modtables>
|
||||
Create an addition table for $\mathbb{Z}/4$ and a multiplication table for $(\mathbb{Z}/5)^\times$
|
||||
Create an addition table for $\mathbb{Z}_4$ and a multiplication table for $(\mathbb{Z}_5)^\times$
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
@ -106,10 +110,10 @@ Create an addition table for $\mathbb{Z}/4$ and a multiplication table for $(\ma
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
1 & 1 & 2 & 3 & 4 \\
|
||||
2 & 2 & 4 & 1 & 3 \\
|
||||
3 & 3 & 1 & 4 & 2 \\
|
||||
4 & 4 & 3 & 2 & 1 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
@ -1,12 +1,14 @@
|
||||
\section{Groups}
|
||||
|
||||
Group theory gives us a set tools for understanding complex systems. We can use groups to solve the Rubik's cube, to solve problems in physics and chemistry, and to understand complex geometric symmetries. It's also worth noting that all modern crypography relies heavily on group theory.
|
||||
|
||||
\definition{}
|
||||
A \textit{group} $(G, \ast)$ consists of a set $G$ and an operator $\ast$. \\
|
||||
A group must have the following properties: \\
|
||||
|
||||
\begin{enumerate}
|
||||
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
|
||||
\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$
|
||||
\item $\ast$ is associative: $(a \ast b) \ast c = a \ast (b \ast c)$ for all $a,b,c \in G$
|
||||
\item There is an \textit{identity} $e \in G$, so that $a \ast e = a \ast e = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = b \ast a = e$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
|
||||
@ -14,21 +16,15 @@ A group must have the following properties: \\
|
||||
|
||||
Any pair $(G, \ast)$ that satisfies these properties is a group.
|
||||
|
||||
\definition{}
|
||||
Note that our definition of a group does \textbf{not} state that $a \ast b = b \ast a$. \\
|
||||
Many interesting groups do not have this property. \\
|
||||
Those that do are called \textit{abelian} groups.
|
||||
|
||||
\problem{}
|
||||
Is $(\mathbb{Z}/5, +)$ a group? \\
|
||||
Is $(\mathbb{Z}/5, -)$ a group? \\
|
||||
Is $(\mathbb{Z}_5, +)$ a group? \\
|
||||
Is $(\mathbb{Z}_5, -)$ a group? \\
|
||||
\hint{$+$ and $-$ refer to our usual definition of modular arithmetic.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
$(\mathbb{R}, \times)$ is not a group. \\
|
||||
Make it one by modifying $\mathbb{R}$. \\
|
||||
Show that $(\mathbb{R}, \times)$ is not a group, then make it one by modifying $\mathbb{R}$. \\
|
||||
|
||||
\begin{solution}
|
||||
$(\mathbb{R}, \times)$ is not a group because $0$ has no inverse. \\
|
||||
@ -40,6 +36,30 @@ Make it one by modifying $\mathbb{R}$. \\
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that a group has exactly one identity element.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that each element in a group has exactly one inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $(\mathbb{Z}_n^\times, \times)$ is a group for any $n \in \mathbb{Z}^+$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\begin{itemize}
|
||||
\item $a \ast b = a \ast c \implies b = c$
|
||||
\item $b \ast a = c \ast a \implies b = c$
|
||||
\end{itemize}
|
||||
This means that we can \say{cancel} operations in groups, much like we do in algebra.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the smallest group we can create?
|
||||
@ -57,46 +77,27 @@ Let $\circ$ be the usual composition operator. \\
|
||||
Is $(G, \circ)$ a group?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
Note that our definition of a group does \textbf{not} state that $a \ast b = b \ast a$. \\
|
||||
Many interesting groups do not have this property.
|
||||
Those that do are called \textit{abelian} groups. \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
One example of a non-abelian group is the set of invertible 2x2 matrices under matrix multiplication. In this handout, all groups are abelian.\\
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that a group has exactly one identity element.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that each element in a group has exactly one inverse.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that...
|
||||
\begin{itemize}
|
||||
\item $e^{-1} = 1$
|
||||
\item $(a^{-1})^{-1} = a$
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $(a^m)^{-1} = (a^{-1})^m$ for all $a \in G$ and $m \in \mathbb{Z}$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
\begin{itemize}
|
||||
\item $a \ast b$ and $a \ast c \implies b = c$
|
||||
\item $b \ast a$ and $c \ast a \implies b = c$
|
||||
\end{itemize}
|
||||
What does this mean intuitively?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a finite group (i.e, $G$ has finitely many elements), and let $g \in G$. \\
|
||||
Show that $\exists~n \in Z^+$ so that $g^n = e$ \\
|
||||
Show that $\exists~n \in \mathbb{Z}^+$ so that $g^n = e$ \\
|
||||
\hint{$g^n = g \ast g \ast ... \ast g$ $n$ times.}
|
||||
|
||||
\vspace{2mm}
|
||||
@ -106,52 +107,52 @@ The smallest such $n$ defines the \textit{order} of $g$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is the order of 5 in $(\mathbb{Z}/25, +)$? \\
|
||||
What is the order of 2 in $((\mathbb{Z}/17)^\times, \times)$? \\
|
||||
What is the order of 5 in $(\mathbb{Z}_{25}, +)$? \\
|
||||
What is the order of 2 in $(\mathbb{Z}_{17}^\times, \times)$? \\
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Let $e, a, b, c$ be counterclockwise rotations of a square by $0, \frac{\pi}{2}, \pi,$ and $\frac{3\pi}{2}$. \\
|
||||
Create a multiplication table for this group.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $d, f, g, h$ correspond to reflections of the square along the following axis. \\
|
||||
Create a multiplication table for this group.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2]
|
||||
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
|
||||
|
||||
\draw[gray] (1.25,1.25) -- (-0.25,-0.25) node[below left]{$d$};
|
||||
\draw[gray] (1.25,-0.25) -- (-0.25,1.25) node[above left]{$f$};
|
||||
\draw[gray] (0.5,-0.25) -- (0.5,1.25) node[above]{$g$};
|
||||
\draw[gray] (-0.25, 0.5) -- (1.25,0.5) node[right]{$h$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a square.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for all symmetries of a rhombus.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find the order of each element in...
|
||||
\begin{itemize}
|
||||
\item The group of symmetries of a square
|
||||
\item The group of symmetries of a rhombus
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
% \problem{}
|
||||
% Let $e, a, b, c$ be counterclockwise rotations of a square by $0, \frac{\pi}{2}, \pi,$ and $\frac{3\pi}{2}$. \\
|
||||
% Create a multiplication table for this group.
|
||||
% \vfill
|
||||
%
|
||||
% \problem{}
|
||||
% Let $d, f, g, h$ correspond to reflections of the square along the following axis. \\
|
||||
% Create a multiplication table for this group.
|
||||
%
|
||||
% \begin{center}
|
||||
% \begin{tikzpicture}[scale=2]
|
||||
% \draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
|
||||
%
|
||||
% \draw[gray] (1.25,1.25) -- (-0.25,-0.25) node[below left]{$d$};
|
||||
% \draw[gray] (1.25,-0.25) -- (-0.25,1.25) node[above left]{$f$};
|
||||
% \draw[gray] (0.5,-0.25) -- (0.5,1.25) node[above]{$g$};
|
||||
% \draw[gray] (-0.25, 0.5) -- (1.25,0.5) node[right]{$h$};
|
||||
%
|
||||
% \end{tikzpicture}
|
||||
% \end{center}
|
||||
% \vfill
|
||||
%
|
||||
% \problem{}
|
||||
% Create a multiplication table for all symmetries of a square.
|
||||
% \vfill
|
||||
% \pagebreak
|
||||
%
|
||||
% \problem{}
|
||||
% Create a multiplication table for all symmetries of a rhombus.
|
||||
% \vfill
|
||||
% \pagebreak
|
||||
%
|
||||
% \problem{}
|
||||
% Find the order of each element in...
|
||||
% \begin{itemize}
|
||||
% \item The group of symmetries of a square
|
||||
% \item The group of symmetries of a rhombus
|
||||
% \end{itemize}
|
||||
%
|
||||
%
|
||||
% \vfill
|
||||
% \pagebreak
|
||||
|
||||
|
@ -1,7 +1,12 @@
|
||||
\section{Isomorphism}
|
||||
\section{Isomorphisms}
|
||||
|
||||
\definition{}
|
||||
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them.
|
||||
We say two groups are \textit{isomorphic} if we can create a bijective mapping between them while preserving multiplication structure. This mapping is called an \textit{isomorphism}.\\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This means that if groups $A$ and $B$ are isomorphic under $f$, \\
|
||||
$a_1 \ast a_2 = a_3$ in A implies that $f(a_1) \ast f(a_2) = f(a_3)$ in B.
|
||||
|
||||
\problem{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
@ -18,39 +23,46 @@ Recall your tables from \ref{modtables}: \\
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
1 & 1 & 2 & 3 & 4 \\
|
||||
2 & 2 & 4 & 1 & 3 \\
|
||||
3 & 3 & 1 & 4 & 2 \\
|
||||
4 & 4 & 3 & 2 & 1 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
Are $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
|
||||
Are $(\mathbb{Z}_4, +)$ and $(\mathbb{Z}_5^\times, \times)$ isomorphic? If they are, find a bijection that maps one to the other.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
|
||||
Let groups $A$ and $B$ be isomorphic under $f$. Show that $f(e_A) = e_B$, where $e_A$ and $e_B$ are the identities of $A$ and $B$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$ be a bijection. \\
|
||||
Let groups $A$ and $B$ be isomorphic under $f$. \\
|
||||
Show that $f(a^{-1}) = f(a)^{-1}$ for all $a \in A$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let groups $A$ and $B$ be isomorphic, and let $f: A \to B$. Show that $f(a)$ and $a$ have the same order.
|
||||
Let groups $A$ and $B$ be isomorphic under $f$. Show that $f(a)$ and $a$ have the same order.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
\problem{}<howmanygroups>
|
||||
Find all distinct groups of two elements. \\
|
||||
Find all distinct groups of three elements. \\
|
||||
Groups that are isomorphic are not distinct.
|
||||
|
||||
\begin{solution}
|
||||
There is only one nonisomorphic two-element group. \\
|
||||
The same is true of a three-element group. \\
|
||||
|
||||
See \texttt{https://oeis.org/A000001}, titled \say{Number of groups of order n}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{Z}^+, \times)$ are isomorphic.
|
||||
Show that the groups $(\mathbb{R}, +)$ and $(\mathbb{R}^+, \times)$ are isomorphic.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
@ -1,8 +1,8 @@
|
||||
\section{Bonus}
|
||||
|
||||
\problem{}
|
||||
Find the inverse of 19 in $\mathbb{Z}/23$ \\
|
||||
\hint{Recall the Euclidian Algorithm}
|
||||
Find the inverse of 19 in $\mathbb{Z}_{23}$ \\
|
||||
\hint{Recall the Euclidean Algorithm}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
@ -17,9 +17,12 @@ $$
|
||||
a^p = a \text{ (mod p)}
|
||||
$$
|
||||
|
||||
For positive integers $a, p$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $a$ and $m$ be integers so that $a < m$. \\
|
||||
Show that $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\
|
||||
|
||||
\begin{solution}
|
||||
|
Loading…
x
Reference in New Issue
Block a user