2023-05-06 17:05:30 -07:00
\section { Logical Algebra}
\definition { }
2024-05-23 12:40:43 -07:00
\textit { Logical operators} operate on the values $ \{ \texttt { true } , \texttt { false } \} $ , \par
2023-07-26 17:55:07 -07:00
just like algebraic operators operate on numbers. \par
In this handout, we'll use the following operators:
2023-05-06 17:05:30 -07:00
\begin { itemize}
\item $ \lnot $ : not
\item $ \land $ : and
\item $ \lor $ : or
\item $ \rightarrow $ : implies
2024-05-23 12:40:43 -07:00
\item $ ( ) $ : parenthesis.
2023-05-06 17:05:30 -07:00
\end { itemize}
The function of these is defined by \textit { truth tables} :
\begin { center}
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { and} \\
\hline
$ A $ & $ B $ & $ A \land B $ \\
\hline
2024-05-23 12:40:43 -07:00
\texttt { F} & \texttt { F} & \texttt { F} \\
\texttt { F} & \texttt { T} & \texttt { F} \\
\texttt { T} & \texttt { F} & \texttt { F} \\
\texttt { T} & \texttt { T} & \texttt { T}
2023-05-06 17:05:30 -07:00
\end { tabular}
\hfill
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { or} \\
\hline
$ A $ & $ B $ & $ A \lor B $ \\
\hline
2024-05-23 12:40:43 -07:00
\texttt { F} & \texttt { F} & \texttt { F} \\
\texttt { F} & \texttt { T} & \texttt { T} \\
\texttt { T} & \texttt { F} & \texttt { T} \\
\texttt { T} & \texttt { T} & \texttt { T}
2023-05-06 17:05:30 -07:00
\end { tabular}
\hfill
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { implies} \\
\hline
$ A $ & $ B $ & $ A \rightarrow B $ \\
\hline
2024-05-23 12:40:43 -07:00
\texttt { F} & \texttt { F} & \texttt { T} \\
\texttt { F} & \texttt { T} & \texttt { T} \\
\texttt { T} & \texttt { F} & \texttt { F} \\
\texttt { T} & \texttt { T} & \texttt { T}
2023-05-06 17:05:30 -07:00
\end { tabular}
\hfill
\begin { tabular} { c | c }
\multicolumn { 2} { c } { not} \\
\hline
$ A $ & $ \lnot A $ \\
\hline
2024-05-23 12:40:43 -07:00
\texttt { T} & \texttt { F} \\
\texttt { F} & \texttt { T} \\
2023-05-06 17:05:30 -07:00
~ & ~ \\
~ & ~ \\
\end { tabular}
\end { center}
\vspace { 2mm}
2024-05-23 12:40:43 -07:00
$ A \land B $ is \texttt { true} only if both $ A $ and $ B $ are \texttt { true} . $ A \lor B $ is \texttt { true} if $ A $ or $ B $ (or both) are \texttt { true} . \par
2023-05-06 17:05:30 -07:00
$ \lnot A $ is the opposite of $ A $ , which is why it looks like a \say { negative} sign. \par
\vspace { 2mm}
$ A \rightarrow B $ is a bit harder to understand. Read aloud, this is \say { $ A $ implies $ B $ .} \par
2024-05-23 12:40:43 -07:00
The only time $ \rightarrow $ produces \texttt { false} is when $ \texttt { true } \rightarrow \texttt { false } $ .
This fact may seem counterintuitive, but will make more sense as we progress through this handout. \par
\hint {
Think about it---if event $ \alpha $ implies $ \beta $ , it is impossible for $ \alpha $ to occur without $ \beta $ . \par
This is the only impossibility. All other variants are valid.
}
2023-05-06 17:05:30 -07:00
\problem { }
Evaluate the following.
\begin { itemize}
2024-05-23 12:40:43 -07:00
\item $ \lnot \texttt { T } $
\item $ \texttt { F } \lor \texttt { T } $
\item $ \texttt { T } \land \texttt { T } $
\item $ ( \texttt { T } \land \texttt { F } ) \lor \texttt { T } $
\item $ ( \texttt { T } \land \texttt { F } ) \lor \texttt { T } $
\item $ ( \lnot ( \texttt { F } \lor \lnot \texttt { T } ) ) \rightarrow \texttt { T } $
\item $ ( \texttt { F } \rightarrow \texttt { T } ) \rightarrow ( \lnot \texttt { F } \lor \lnot \texttt { T } ) $
2023-05-06 17:05:30 -07:00
\end { itemize}
\vfill
\pagebreak
2023-05-18 21:13:25 -07:00
\begin { instructornote}
2024-05-23 12:40:43 -07:00
We can also think of $ [ x \geq 0 ] \rightarrow b $ as follows:
if $ x $ isn't the kind of object we care about, we evaluate true and
check the next one. If $ x $ \textit { is} the kind of object we care about
and $ b $ is false, we have a counterexample to $ [ x \geq 0 ] \rightarrow b $ ,
and thus $ \texttt { T } \rightarrow \texttt { F } $ must be false.
2023-05-18 21:13:25 -07:00
\vspace { 2mm}
Say we have the sentence $ \forall x ~ ( a \rightarrow b ) $ . \par
For example, take $ \varphi = \forall x ~ ( [ x \geq 0 ] \rightarrow [ \exists y ~ y ^ 2 = x ] ) $ . \par
$ \varphi $ holds whenever any positive $ x $ has a square root.
\vspace { 2mm}
If $ ( \text { F } \rightarrow * ) $ returned false, statements like the above would be hard to write. \par
If $ x $ is negative, $ \varphi $ doesn't care whether or not it has a root. In this case, $ \text { F } \rightarrow * $ must be true to avoid making whole $ \forall $ false.
\end { instructornote}
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
\problem { }
Evaluate the following.
\begin { itemize}
2024-05-23 12:40:43 -07:00
\item $ A \rightarrow \texttt { T } $ for any $ A $
2023-05-09 21:23:09 -07:00
\item $ ( \lnot ( A \rightarrow B ) ) \rightarrow A $ for any $ A, B $
\item $ ( A \rightarrow B ) \rightarrow ( \lnot B \rightarrow \lnot A ) $ for any $ A, B $
\end { itemize}
\vfill
2023-05-06 17:05:30 -07:00
\problem { }
Show that $ \lnot ( A \rightarrow \lnot B ) $ is equivalent to $ A \land B $ . \par
2024-05-23 12:40:43 -07:00
That is, show that these expressions always evaluate to the same value given
the same $ A $ and $ B $ . \par
2023-05-06 17:05:30 -07:00
\hint { Use a truth table}
\vfill
\problem { }
2024-05-23 12:40:43 -07:00
Write an expression equivalent to $ A \lor B $ using only $ \lnot $ , $ \rightarrow $ , and $ ( ) $ ?
2023-05-06 17:05:30 -07:00
\begin { solution}
$ ( ( \lnot A ) \rightarrow B ) $
\end { solution}
\vfill
Note that both $ \land $ and $ \lor $ can be defined using the other logical symbols. \par
The only logical symbols we \textit { need} are $ \lnot $ , $ \rightarrow $ , and $ ( ) $ . \par
2024-05-23 12:40:43 -07:00
We include $ \land $ and $ \lor $ to simplify our expressions.
2023-05-06 17:05:30 -07:00
\pagebreak