2023-05-06 17:05:30 -07:00
\section { Logical Algebra}
\definition { }
Odds are, you are familiar with \textit { logical symbols} . \par
In this handout, we'll use the following:
\begin { itemize}
\item $ \lnot $ : not
\item $ \land $ : and
\item $ \lor $ : or
\item $ \rightarrow $ : implies
\item $ ( ) $ , parenthesis.
\end { itemize}
The function of these is defined by \textit { truth tables} :
\begin { center}
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { and} \\
\hline
$ A $ & $ B $ & $ A \land B $ \\
\hline
F & F & F \\
F & T & F \\
T & F & F \\
T & T & T
\end { tabular}
\hfill
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { or} \\
\hline
$ A $ & $ B $ & $ A \lor B $ \\
\hline
F & F & F \\
F & T & T \\
T & F & T \\
T & T & T
\end { tabular}
\hfill
\begin { tabular} { c | c | c }
\multicolumn { 3} { c } { implies} \\
\hline
$ A $ & $ B $ & $ A \rightarrow B $ \\
\hline
F & F & T \\
F & T & T \\
T & F & F \\
T & T & T
\end { tabular}
\hfill
\begin { tabular} { c | c }
\multicolumn { 2} { c } { not} \\
\hline
$ A $ & $ \lnot A $ \\
\hline
T & F \\
F & T \\
~ & ~ \\
~ & ~ \\
\end { tabular}
\end { center}
\vspace { 2mm}
2023-05-11 20:05:02 -07:00
$ A \land B $ is only true if both $ A $ and $ B $ are true. $ A \lor B $ is true when $ A $ or $ B $ (or both) are true. \par
2023-05-06 17:05:30 -07:00
$ \lnot A $ is the opposite of $ A $ , which is why it looks like a \say { negative} sign. \par
\vspace { 2mm}
$ A \rightarrow B $ is a bit harder to understand. Read aloud, this is \say { $ A $ implies $ B $ .} \par
2023-05-18 21:13:25 -07:00
The only time $ \rightarrow $ is false is when $ T \rightarrow F $ . This may seem counterintuitive, but it makes sense. Think about it. \par
2023-05-06 17:05:30 -07:00
\problem { }
Evaluate the following.
\begin { itemize}
\item $ ( T \land F ) \lor T $
\item $ ( \lnot ( F \lor \lnot T ) ) \rightarrow T $
2023-05-09 21:23:09 -07:00
\item $ ( F \rightarrow T ) \rightarrow ( \lnot F \lor \lnot T ) $
2023-05-06 17:05:30 -07:00
\end { itemize}
\vfill
\pagebreak
2023-05-18 21:13:25 -07:00
\begin { instructornote}
After the class has done a few definable set problems, you can try to provide some intuition for $ \rightarrow $ with the following example.
\vspace { 2mm}
Say we have the sentence $ \forall x ~ ( a \rightarrow b ) $ . \par
For example, take $ \varphi = \forall x ~ ( [ x \geq 0 ] \rightarrow [ \exists y ~ y ^ 2 = x ] ) $ . \par
$ \varphi $ holds whenever any positive $ x $ has a square root.
\vspace { 2mm}
If $ ( \text { F } \rightarrow * ) $ returned false, statements like the above would be hard to write. \par
If $ x $ is negative, $ \varphi $ doesn't care whether or not it has a root. In this case, $ \text { F } \rightarrow * $ must be true to avoid making whole $ \forall $ false.
\vspace { 2mm}
You can think of $ [ x \geq 0 ] \rightarrow b $ as a \say { sanity check} in a program: if $ x $ isn't the kind of object we care about, return true and check the next one. If $ x $ \textit { is} the kind of object we care about and $ b $ is false, we have a counterexample to $ [ x \geq 0 ] \rightarrow b $ , and thus $ T \rightarrow F $ must be false.
\end { instructornote}
2023-05-06 17:05:30 -07:00
2023-05-09 21:23:09 -07:00
\problem { }
Evaluate the following.
\begin { itemize}
\item $ A \rightarrow T $ for any $ A $
\item $ ( \lnot ( A \rightarrow B ) ) \rightarrow A $ for any $ A, B $
\item $ ( A \rightarrow B ) \rightarrow ( \lnot B \rightarrow \lnot A ) $ for any $ A, B $
\end { itemize}
\vfill
2023-05-06 17:05:30 -07:00
\problem { }
Show that $ \lnot ( A \rightarrow \lnot B ) $ is equivalent to $ A \land B $ . \par
2023-05-11 20:05:02 -07:00
That is, show that these give the same result for the same $ A $ and $ B $ .
2023-05-06 17:05:30 -07:00
\hint { Use a truth table}
\vfill
\problem { }
Can you express $ A \lor B $ using only $ \lnot $ , $ \rightarrow $ , and $ ( ) $ ?
\begin { solution}
$ ( ( \lnot A ) \rightarrow B ) $
\end { solution}
\vfill
Note that both $ \land $ and $ \lor $ can be defined using the other logical symbols. \par
The only logical symbols we \textit { need} are $ \lnot $ , $ \rightarrow $ , and $ ( ) $ . \par
We include $ \land $ and $ \lor $ to simplify our logical expressions.
\pagebreak