102 lines
2.2 KiB
TeX
102 lines
2.2 KiB
TeX
|
\section{Logical Algebra}
|
||
|
|
||
|
\definition{}
|
||
|
Odds are, you are familiar with \textit{logical symbols}. \par
|
||
|
In this handout, we'll use the following:
|
||
|
\begin{itemize}
|
||
|
\item $\lnot$: not
|
||
|
\item $\land$: and
|
||
|
\item $\lor$: or
|
||
|
\item $\rightarrow$: implies
|
||
|
\item $()$, parenthesis.
|
||
|
\end{itemize}
|
||
|
|
||
|
The function of these is defined by \textit{truth tables}:
|
||
|
\begin{center}
|
||
|
\begin{tabular}{ c | c | c }
|
||
|
\multicolumn{3}{ c }{and} \\
|
||
|
\hline
|
||
|
$A$ & $B$ & $A \land B$ \\
|
||
|
\hline
|
||
|
F & F & F \\
|
||
|
F & T & F \\
|
||
|
T & F & F \\
|
||
|
T & T & T
|
||
|
\end{tabular}
|
||
|
\hfill
|
||
|
\begin{tabular}{ c | c | c }
|
||
|
\multicolumn{3}{ c }{or} \\
|
||
|
\hline
|
||
|
$A$ & $B$ & $A \lor B$ \\
|
||
|
\hline
|
||
|
F & F & F \\
|
||
|
F & T & T \\
|
||
|
T & F & T \\
|
||
|
T & T & T
|
||
|
\end{tabular}
|
||
|
\hfill
|
||
|
\begin{tabular}{ c | c | c }
|
||
|
\multicolumn{3}{ c }{implies} \\
|
||
|
\hline
|
||
|
$A$ & $B$ & $A \rightarrow B$ \\
|
||
|
\hline
|
||
|
F & F & T \\
|
||
|
F & T & T \\
|
||
|
T & F & F \\
|
||
|
T & T & T
|
||
|
\end{tabular}
|
||
|
\hfill
|
||
|
\begin{tabular}{ c | c }
|
||
|
\multicolumn{2}{ c }{not} \\
|
||
|
\hline
|
||
|
$A$ & $\lnot A$ \\
|
||
|
\hline
|
||
|
T & F \\
|
||
|
F & T \\
|
||
|
~ & ~ \\
|
||
|
~ & ~ \\
|
||
|
\end{tabular}
|
||
|
\end{center}
|
||
|
|
||
|
\vspace{2mm}
|
||
|
|
||
|
$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is only true if $A$ or $B$ (or both) are true. \par
|
||
|
$\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par
|
||
|
|
||
|
\vspace{2mm}
|
||
|
|
||
|
$A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par
|
||
|
The only time $\rightarrow$ is false is when $T \rightarrow F$. Think about it: why does this make sense? \par
|
||
|
|
||
|
\problem{}
|
||
|
Evaluate the following.
|
||
|
\begin{itemize}
|
||
|
\item $(T \land F) \lor T$
|
||
|
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
||
|
\item $A \rightarrow T$ for any $A$
|
||
|
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A,B$
|
||
|
\end{itemize}
|
||
|
|
||
|
\vfill
|
||
|
\pagebreak
|
||
|
|
||
|
\problem{}
|
||
|
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||
|
\hint{Use a truth table}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
\problem{}
|
||
|
Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
|
||
|
|
||
|
\begin{solution}
|
||
|
$((\lnot A) \rightarrow B)$
|
||
|
\end{solution}
|
||
|
|
||
|
\vfill
|
||
|
|
||
|
Note that both $\land$ and $\lor$ can be defined using the other logical symbols. \par
|
||
|
The only logical symbols we \textit{need} are $\lnot$, $\rightarrow$, and $()$. \par
|
||
|
We include $\land$ and $\lor$ to simplify our logical expressions.
|
||
|
|
||
|
\pagebreak
|