Compare commits
7 Commits
6406fd8786
...
1493a97f01
Author | SHA1 | Date |
---|---|---|
Mark | 1493a97f01 | |
Mark | c62fa0b4d5 | |
Mark | e850a13f71 | |
Mark | bbf47e29d5 | |
Mark | 7e41383ea9 | |
Mark | 129b134114 | |
Mark | 0289031c88 |
|
@ -710,6 +710,9 @@ dependencies = [
|
|||
[[package]]
|
||||
name = "galactica-util"
|
||||
version = "0.0.0"
|
||||
dependencies = [
|
||||
"nalgebra",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "getrandom"
|
||||
|
|
18
TODO.md
18
TODO.md
|
@ -2,7 +2,10 @@
|
|||
- Fix angles (point, land)
|
||||
- Land from farther away
|
||||
- Take off
|
||||
- Prevent collisions on unlanding
|
||||
- UI: text arranger
|
||||
- loading screen, menus
|
||||
- Indicators (planet names, enemy ship stats)
|
||||
- Start documenting
|
||||
- Check for handle leaks
|
||||
- Don't allocate each frame
|
||||
|
@ -55,10 +58,6 @@
|
|||
- Debris (ship death, destructible, physics)
|
||||
- Orbiting debris (asteroids)
|
||||
- Collectibles (flotsam)
|
||||
- UI
|
||||
- loading screen, menus
|
||||
- Indicators (planet names, enemy ship stats)
|
||||
- Landable planets
|
||||
- Back arrow: reverse thruster or reverse ship
|
||||
- Multiplayer? (how does that fit into gameplay?)
|
||||
- On-screen text
|
||||
|
@ -66,7 +65,8 @@
|
|||
- Save games
|
||||
- Date system -> planet position
|
||||
- AI fleets
|
||||
- More ship behaviors
|
||||
- More ship behaviors, improved ai
|
||||
- Collision avoidance
|
||||
- Jump between systems
|
||||
- Government color, ship tint
|
||||
- Different kinds of ship behaviors:
|
||||
|
@ -75,8 +75,7 @@
|
|||
- where to go
|
||||
- etc, extra flags
|
||||
- Advanced particle physics (must move to cpu. Maybe both?)
|
||||
- Background simulation (two modes: physics-what's visible, data-everything else)
|
||||
|
||||
- Background simulation (two modes)
|
||||
|
||||
## Faction interaction
|
||||
- Targeting overrides hitscan rules (only for player)
|
||||
|
@ -99,11 +98,14 @@
|
|||
- Random animation delay/fps?
|
||||
- Better WGSL preprocessor
|
||||
- Depth buffer (z-axis when landing!)
|
||||
- Compute shader for particles
|
||||
- Better performance for projectiles
|
||||
|
||||
## Content
|
||||
- Angled engines
|
||||
- Angled guns
|
||||
- Turn engine flares
|
||||
- Turn engine physics?
|
||||
- Reverse engine & flares
|
||||
- Better ship colliders (need a tool or an algorithm)
|
||||
- Turrets
|
||||
|
@ -159,7 +161,7 @@
|
|||
- How big should sprite resolutions be? How about frame rate?
|
||||
- Naming: atlas, sprite, image, frame, texture
|
||||
- Outfits may not change unless you've landed. They might not change ever for CC ships!
|
||||
- All angle adjustments happen in content
|
||||
- All angle adjustments happen in content & shaders
|
||||
|
||||
|
||||
## Ideas
|
||||
|
|
|
@ -66,7 +66,7 @@ impl<'a> Game {
|
|||
ShipHandle { index: 0 },
|
||||
FactionHandle { index: 1 },
|
||||
ShipPersonality::Point,
|
||||
Point2::new(400.0, 0.0),
|
||||
Point2::new(1000.0, 0.0),
|
||||
);
|
||||
|
||||
let s = systemsim.get_ship_mut(&a).unwrap();
|
||||
|
@ -79,7 +79,7 @@ impl<'a> Game {
|
|||
ShipHandle { index: 0 },
|
||||
FactionHandle { index: 0 },
|
||||
ShipPersonality::Dummy,
|
||||
Point2::new(0.0, 4000.0),
|
||||
Point2::new(200.0, 2000.0),
|
||||
);
|
||||
|
||||
let s = systemsim.get_ship_mut(&a).unwrap();
|
||||
|
|
|
@ -86,6 +86,7 @@ fn main() -> Result<()> {
|
|||
if let Some(o) = o {
|
||||
match o.data.get_state() {
|
||||
ShipState::Landing { .. }
|
||||
| ShipState::UnLanding { .. }
|
||||
| ShipState::Collapsing { .. }
|
||||
| ShipState::Flying { .. } => {
|
||||
let r =
|
||||
|
@ -96,11 +97,6 @@ fn main() -> Result<()> {
|
|||
None
|
||||
}
|
||||
}
|
||||
ShipState::UnLanding { .. } => {
|
||||
let pos =
|
||||
o.data.get_state().unlanding_position(&content).unwrap();
|
||||
Some(Vector2::new(pos.x, pos.y))
|
||||
}
|
||||
|
||||
ShipState::Landed { target } => {
|
||||
let b = content.get_system_object(*target);
|
||||
|
|
|
@ -48,10 +48,10 @@ fn vertex_main(
|
|||
vertex.position.y * scale
|
||||
);
|
||||
|
||||
// Apply rotation
|
||||
// Apply rotation (and adjust sprite angle, since sprites point north)
|
||||
pos = mat2x2(
|
||||
vec2(cos(instance.angle), sin(instance.angle)),
|
||||
vec2(-sin(instance.angle), cos(instance.angle))
|
||||
vec2(cos(instance.angle - 1.5708), sin(instance.angle - 1.5708)),
|
||||
vec2(-sin(instance.angle - 1.5708), cos(instance.angle - 1.5708))
|
||||
) * pos;
|
||||
|
||||
// Correct for screen aspect, preserving height
|
||||
|
|
|
@ -36,7 +36,7 @@ impl GPUState {
|
|||
ship_cnt = state.ct.get_ship(ship.data.get_content());
|
||||
}
|
||||
|
||||
ShipState::Landing { current_z, .. } => {
|
||||
ShipState::UnLanding { current_z, .. } | ShipState::Landing { current_z, .. } => {
|
||||
let r = state.systemsim.get_rigid_body(ship.rigid_body).unwrap();
|
||||
let pos = *r.translation();
|
||||
ship_pos = Point3::new(pos.x, pos.y, *current_z);
|
||||
|
@ -44,13 +44,6 @@ impl GPUState {
|
|||
ship_ang = ship_rot.angle();
|
||||
ship_cnt = state.ct.get_ship(ship.data.get_content());
|
||||
}
|
||||
|
||||
ShipState::UnLanding { .. } => {
|
||||
ship_pos = ship.data.get_state().unlanding_position(state.ct).unwrap();
|
||||
//ship_ang = 0.0 + ((to_angle - 0.0) * 1f32.min(elapsed / 1.0));
|
||||
ship_ang = 0.0;
|
||||
ship_cnt = state.ct.get_ship(ship.data.get_content());
|
||||
}
|
||||
}
|
||||
|
||||
// Position adjusted for parallax
|
||||
|
@ -112,8 +105,9 @@ impl GPUState {
|
|||
let flare = ship.data.get_outfits().get_flare_sprite(state.ct);
|
||||
if {
|
||||
let is_flying = match ship.data.get_state() {
|
||||
ShipState::Flying { .. } => true,
|
||||
ShipState::Landing { .. } => true,
|
||||
ShipState::Flying { .. }
|
||||
| ShipState::UnLanding { .. }
|
||||
| ShipState::Landing { .. } => true,
|
||||
_ => false,
|
||||
};
|
||||
ship.get_controls().thrust && flare.is_some() && is_flying
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
use galactica_system::data::ShipState;
|
||||
use galactica_util::{constants::UI_SPRITE_INSTANCE_LIMIT, to_radians};
|
||||
use nalgebra::{Point2, Vector2};
|
||||
use galactica_util::{clockwise_angle, constants::UI_SPRITE_INSTANCE_LIMIT, to_radians};
|
||||
use nalgebra::{Point2, Rotation2, Vector2};
|
||||
|
||||
use crate::{
|
||||
datastructs::RenderState,
|
||||
|
@ -41,21 +41,15 @@ impl Radar {
|
|||
match player_ship.data.get_state() {
|
||||
ShipState::Dead => {}
|
||||
|
||||
ShipState::UnLanding { .. } => {
|
||||
let pos = player_ship
|
||||
.data
|
||||
.get_state()
|
||||
.unlanding_position(&input.ct)
|
||||
.unwrap();
|
||||
self.last_player_position = Point2::new(pos.x, pos.y)
|
||||
}
|
||||
|
||||
ShipState::Landed { target } => {
|
||||
let landed_body = input.ct.get_system_object(*target);
|
||||
self.last_player_position = Point2::new(landed_body.pos.x, landed_body.pos.y);
|
||||
}
|
||||
|
||||
ShipState::Landing { .. } | ShipState::Flying { .. } | ShipState::Collapsing { .. } => {
|
||||
ShipState::UnLanding { .. }
|
||||
| ShipState::Landing { .. }
|
||||
| ShipState::Flying { .. }
|
||||
| ShipState::Collapsing { .. } => {
|
||||
let player_body = input
|
||||
.systemsim
|
||||
.get_rigid_body(player_ship.rigid_body)
|
||||
|
@ -227,7 +221,7 @@ impl Radar {
|
|||
(radar_size / -2.0 - 10.0) + d.y,
|
||||
)
|
||||
.into(),
|
||||
angle: 0.0,
|
||||
angle: to_radians(90.0),
|
||||
size,
|
||||
color,
|
||||
sprite_index: sprite.get_index(),
|
||||
|
@ -245,7 +239,7 @@ impl Radar {
|
|||
(radar_size / -2.0 - 10.0) - d.y,
|
||||
)
|
||||
.into(),
|
||||
angle: to_radians(90.0),
|
||||
angle: to_radians(180.0),
|
||||
size,
|
||||
color,
|
||||
sprite_index: sprite.get_index(),
|
||||
|
@ -263,7 +257,7 @@ impl Radar {
|
|||
(radar_size / -2.0 - 10.0) - d.y,
|
||||
)
|
||||
.into(),
|
||||
angle: to_radians(180.0),
|
||||
angle: to_radians(270.0),
|
||||
size,
|
||||
color,
|
||||
sprite_index: sprite.get_index(),
|
||||
|
@ -281,7 +275,7 @@ impl Radar {
|
|||
(radar_size / -2.0 - 10.0) + d.y,
|
||||
)
|
||||
.into(),
|
||||
angle: to_radians(270.0),
|
||||
angle: to_radians(0.0),
|
||||
size,
|
||||
color,
|
||||
sprite_index: sprite.get_index(),
|
||||
|
@ -294,11 +288,9 @@ impl Radar {
|
|||
let q = Point2::new(0.0, 0.0) - self.last_player_position;
|
||||
let m = q.magnitude();
|
||||
if m > 200.0 {
|
||||
let player_angle = q.angle(&Vector2::new(0.0, 1.0));
|
||||
|
||||
let position: Point2<f32> =
|
||||
Point2::new(radar_size / 2.0 + 10.0, radar_size / -2.0 - 10.0)
|
||||
+ ((q.normalize() * 0.865) * (radar_size / 2.0));
|
||||
let angle = clockwise_angle(&Vector2::new(1.0, 0.0), &q);
|
||||
let position = Point2::new(10.0 + (radar_size / 2.0), -10.0 - (radar_size / 2.0))
|
||||
+ Rotation2::new(angle) * Vector2::new(0.915 * (radar_size / 2.0), 0.0);
|
||||
|
||||
if state.vertex_buffers.ui_counter as u64 > UI_SPRITE_INSTANCE_LIMIT {
|
||||
// TODO: no panic, handle this better.
|
||||
|
@ -311,7 +303,7 @@ impl Radar {
|
|||
bytemuck::cast_slice(&[UiInstance {
|
||||
anchor: PositionAnchor::NwC.to_int(),
|
||||
position: position.into(),
|
||||
angle: -player_angle,
|
||||
angle,
|
||||
size: 10.0,
|
||||
color: [1.0, 1.0, 1.0, 1f32.min((m - 200.0) / 400.0)],
|
||||
sprite_index: arrow_sprite.get_index(),
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use galactica_content::{Content, FactionHandle, GunPoint, Outfit, ShipHandle, SystemObjectHandle};
|
||||
use nalgebra::{Point2, Point3};
|
||||
use nalgebra::Isometry2;
|
||||
use rand::{rngs::ThreadRng, Rng};
|
||||
use rapier2d::math::Isometry;
|
||||
use std::{collections::HashMap, time::Instant};
|
||||
|
@ -65,17 +65,14 @@ pub enum ShipState {
|
|||
/// This ship is taking off from a planet
|
||||
/// (playing the animation)
|
||||
UnLanding {
|
||||
/// The point, in world coordinates, to which we're going
|
||||
/// The point to which we're going, in world coordinates
|
||||
to_position: Isometry<f32>,
|
||||
|
||||
/// The planet we're taking off from
|
||||
from: SystemObjectHandle,
|
||||
|
||||
/// The total amount of time, in seconds, we will spend taking off
|
||||
total: f32,
|
||||
|
||||
/// The amount of time we've already spent playing this unlanding sequence
|
||||
elapsed: f32,
|
||||
/// Our current z-coordinate
|
||||
current_z: f32,
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -99,42 +96,6 @@ impl ShipState {
|
|||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Compute position of this ship's sprite during its unlanding sequence
|
||||
pub fn unlanding_position(&self, ct: &Content) -> Option<Point3<f32>> {
|
||||
match self {
|
||||
Self::UnLanding {
|
||||
to_position,
|
||||
from,
|
||||
total,
|
||||
elapsed,
|
||||
..
|
||||
} => Some({
|
||||
let from = ct.get_system_object(*from);
|
||||
|
||||
let t = Point2::new(to_position.translation.x, to_position.translation.y);
|
||||
let diff = t - Point2::new(from.pos.x, from.pos.y);
|
||||
//let diff = diff - diff.normalize() * (target.size / 2.0) * 0.8;
|
||||
|
||||
// TODO: improve animation
|
||||
// TODO: fade
|
||||
// TODO: atmosphere burn
|
||||
// TODO: land at random point
|
||||
// TODO: don't jump camera
|
||||
// TODO: time by distance
|
||||
// TODO: keep momentum
|
||||
|
||||
let pos = Point2::new(from.pos.x, from.pos.y) + (diff * (elapsed / total));
|
||||
|
||||
Point3::new(
|
||||
pos.x,
|
||||
pos.y,
|
||||
from.pos.z + ((1.0 - from.pos.z) * (elapsed / total)),
|
||||
)
|
||||
}),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents all attributes of a single ship
|
||||
|
@ -245,28 +206,57 @@ impl ShipData {
|
|||
self.state = ShipState::Landed { target };
|
||||
}
|
||||
_ => {
|
||||
unreachable!("Called `finish_land_on` on a ship that isn't flying!")
|
||||
unreachable!("Called `finish_land_on` on a ship that isn't landing!")
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Take off from `target`
|
||||
pub fn unland(&mut self, to_position: Isometry<f32>) {
|
||||
/// Land this ship on `target`
|
||||
/// This does NO checks (speed, range, etc).
|
||||
/// That is the simulation's responsiblity.
|
||||
///
|
||||
/// Will panic if we're not flying.
|
||||
pub fn start_unland_to(&mut self, ct: &Content, to_position: Isometry2<f32>) {
|
||||
match self.state {
|
||||
ShipState::Landed { target } => {
|
||||
let obj = ct.get_system_object(target);
|
||||
self.state = ShipState::UnLanding {
|
||||
to_position,
|
||||
from: target,
|
||||
total: 2.0,
|
||||
elapsed: 0.0,
|
||||
current_z: obj.pos.z,
|
||||
};
|
||||
}
|
||||
_ => {
|
||||
unreachable!("Called `unland` on a ship that isn't landed!")
|
||||
unreachable!("Called `start_unland_to` on a ship that isn't landed!")
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// When unlanding, update z position.
|
||||
/// Will panic if we're not unlanding
|
||||
pub fn set_unlanding_z(&mut self, z: f32) {
|
||||
match &mut self.state {
|
||||
ShipState::UnLanding {
|
||||
ref mut current_z, ..
|
||||
} => *current_z = z,
|
||||
_ => unreachable!("Called `set_unlanding_z` on a ship that isn't unlanding!"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Finish unlanding sequence
|
||||
/// Will panic if we're not unlanding
|
||||
pub fn finish_unland_to(&mut self) {
|
||||
match self.state {
|
||||
ShipState::UnLanding { .. } => {
|
||||
self.state = ShipState::Flying {
|
||||
autopilot: ShipAutoPilot::None,
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
unreachable!("Called `finish_unland_to` on a ship that isn't unlanding!")
|
||||
}
|
||||
};
|
||||
}
|
||||
/// Add an outfit to this ship
|
||||
pub fn add_outfit(&mut self, o: &Outfit) -> super::OutfitAddResult {
|
||||
let r = self.outfits.add(o);
|
||||
|
@ -331,20 +321,7 @@ impl ShipData {
|
|||
/// Update this ship's state by `t` seconds
|
||||
pub(crate) fn step(&mut self, t: f32) {
|
||||
match self.state {
|
||||
ShipState::Landing { .. } => {}
|
||||
|
||||
ShipState::UnLanding {
|
||||
ref mut elapsed,
|
||||
total,
|
||||
..
|
||||
} => {
|
||||
*elapsed += t;
|
||||
if *elapsed >= total {
|
||||
self.state = ShipState::Flying {
|
||||
autopilot: ShipAutoPilot::None,
|
||||
};
|
||||
}
|
||||
}
|
||||
ShipState::UnLanding { .. } | ShipState::Landing { .. } => {}
|
||||
|
||||
ShipState::Landed { .. } => {
|
||||
// Cooldown guns
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
use std::collections::HashMap;
|
||||
|
||||
use galactica_content::SystemObjectHandle;
|
||||
use galactica_util::to_radians;
|
||||
use galactica_util::{clockwise_angle, to_radians};
|
||||
use nalgebra::Vector2;
|
||||
use rapier2d::{dynamics::RigidBodySet, geometry::ColliderHandle};
|
||||
|
||||
|
@ -16,23 +15,21 @@ use crate::phys::{
|
|||
|
||||
/// Land this ship on the given object
|
||||
pub fn auto_landing(
|
||||
res: &PhysStepResources,
|
||||
_res: &PhysStepResources,
|
||||
rigid_bodies: &RigidBodySet,
|
||||
ships: &HashMap<ColliderHandle, PhysSimShip>,
|
||||
this_ship: ColliderHandle,
|
||||
target_handle: SystemObjectHandle,
|
||||
target_pos: Vector2<f32>,
|
||||
) -> Option<ShipControls> {
|
||||
let rigid_body_handle = ships.get(&this_ship).unwrap().rigid_body;
|
||||
let rigid_body = rigid_bodies.get(rigid_body_handle).unwrap();
|
||||
let target_obj = res.ct.get_system_object(target_handle);
|
||||
let target_pos = Vector2::new(target_obj.pos.x, target_obj.pos.y);
|
||||
let my_pos = *rigid_body.translation();
|
||||
let my_rot = rigid_body.rotation() * Vector2::new(1.0, 0.0);
|
||||
let my_vel = rigid_body.linvel();
|
||||
let my_angvel = rigid_body.angvel();
|
||||
let v_t = target_pos - my_pos; // Vector to target
|
||||
let v_d = v_t - my_vel; // Desired thrust vector
|
||||
let angle_delta = (my_rot.x * v_d.y - v_d.x * my_rot.y).atan2(my_rot.dot(&v_d));
|
||||
let angle_delta = clockwise_angle(&my_rot, &v_d);
|
||||
let mut controls = ShipControls::new();
|
||||
|
||||
if angle_delta < 0.0 && my_angvel > -0.3 {
|
||||
|
|
|
@ -100,11 +100,11 @@ impl PhysSimShip {
|
|||
self.step_effects(res, rigid_body, collider);
|
||||
}
|
||||
|
||||
ShipState::Landing { .. } => {
|
||||
ShipState::UnLanding { .. } | ShipState::Landing { .. } => {
|
||||
self.step_physics(res, rigid_body, collider);
|
||||
}
|
||||
|
||||
ShipState::UnLanding { .. } | ShipState::Dead | ShipState::Landed { .. } => {}
|
||||
ShipState::Dead | ShipState::Landed { .. } => {}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -138,7 +138,7 @@ impl PhysSim {
|
|||
|
||||
ShipState::Landed { .. } => {
|
||||
if player.input.pressed_land() {
|
||||
self.unland_ship(ct, player.ship.unwrap());
|
||||
self.start_unland_ship(ct, player.ship.unwrap());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
|
@ -9,7 +9,11 @@ use rapier2d::{
|
|||
|
||||
use crate::{
|
||||
data::{ShipAutoPilot, ShipState},
|
||||
phys::{controller::autopilot, objects::PhysProjectile, ParticleBuilder, PhysStepResources},
|
||||
phys::{
|
||||
controller::autopilot,
|
||||
objects::{PhysProjectile, ShipControls},
|
||||
ParticleBuilder, PhysStepResources,
|
||||
},
|
||||
};
|
||||
|
||||
use super::PhysSim;
|
||||
|
@ -36,9 +40,7 @@ impl PhysSim {
|
|||
to_remove.push(collider);
|
||||
}
|
||||
|
||||
ShipState::UnLanding { .. }
|
||||
| ShipState::Landed { .. }
|
||||
| ShipState::Collapsing { .. } => {
|
||||
ShipState::Landed { .. } | ShipState::Collapsing { .. } => {
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
ship.step(
|
||||
res,
|
||||
|
@ -47,6 +49,48 @@ impl PhysSim {
|
|||
);
|
||||
}
|
||||
|
||||
ShipState::UnLanding {
|
||||
to_position,
|
||||
current_z,
|
||||
from,
|
||||
} => {
|
||||
let from_obj = res.ct.get_system_object(*from);
|
||||
let controls = autopilot::auto_landing(
|
||||
&res,
|
||||
&self.rigid_body_set,
|
||||
&self.ships,
|
||||
ship.collider,
|
||||
Vector2::new(to_position.translation.x, to_position.translation.y),
|
||||
);
|
||||
let r = &mut self.rigid_body_set[ship.rigid_body];
|
||||
let max_d = (Vector2::new(from_obj.pos.x, from_obj.pos.y)
|
||||
- Vector2::new(to_position.translation.x, to_position.translation.y))
|
||||
.magnitude();
|
||||
let now_d = (r.translation()
|
||||
- Vector2::new(to_position.translation.x, to_position.translation.y))
|
||||
.magnitude();
|
||||
let f = now_d / max_d;
|
||||
|
||||
let current_z = *current_z;
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
let zdist = 1.0 - from_obj.pos.z;
|
||||
|
||||
if current_z <= 1.0 {
|
||||
self.finish_unland_ship(collider);
|
||||
} else if current_z <= 1.5 {
|
||||
ship.data
|
||||
.set_unlanding_z(1f32.max(current_z - (0.5 * res.t) / 0.5));
|
||||
ship.controls = ShipControls::new();
|
||||
} else {
|
||||
ship.data.set_unlanding_z(1.0 - zdist * f);
|
||||
|
||||
if let Some(controls) = controls {
|
||||
ship.controls = controls;
|
||||
}
|
||||
ship.step(res, r, &mut self.collider_set[ship.collider])
|
||||
};
|
||||
}
|
||||
|
||||
ShipState::Landing { target, current_z } => {
|
||||
let target_obj = res.ct.get_system_object(*target);
|
||||
let controls = autopilot::auto_landing(
|
||||
|
@ -54,17 +98,16 @@ impl PhysSim {
|
|||
&self.rigid_body_set,
|
||||
&self.ships,
|
||||
ship.collider,
|
||||
*target,
|
||||
Vector2::new(target_obj.pos.x, target_obj.pos.y),
|
||||
);
|
||||
|
||||
let current_z = *current_z;
|
||||
let target = *target;
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
let r = &mut self.rigid_body_set[ship.rigid_body];
|
||||
let zdist = target_obj.pos.z - 1.0;
|
||||
|
||||
if current_z >= target_obj.pos.z {
|
||||
self.finish_land_ship(res.ct, collider, target);
|
||||
self.finish_land_ship(collider);
|
||||
} else {
|
||||
ship.data.set_landing_z(current_z + zdist * res.t / 2.0);
|
||||
|
||||
|
@ -82,12 +125,13 @@ impl PhysSim {
|
|||
ShipAutoPilot::Landing {
|
||||
target: target_handle,
|
||||
} => {
|
||||
let target_obj = res.ct.get_system_object(*target_handle);
|
||||
let controls = autopilot::auto_landing(
|
||||
&res,
|
||||
&self.rigid_body_set,
|
||||
&self.ships,
|
||||
ship.collider,
|
||||
*target_handle,
|
||||
Vector2::new(target_obj.pos.x, target_obj.pos.y),
|
||||
);
|
||||
|
||||
let landed = self.try_land_ship(res.ct, collider, *target_handle);
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
use galactica_content::{Content, Relationship, SystemObjectHandle};
|
||||
use nalgebra::{Isometry2, Point2, Vector2};
|
||||
use nalgebra::{Isometry2, Point2, Rotation2, Vector2};
|
||||
use rand::Rng;
|
||||
use rapier2d::{
|
||||
dynamics::RigidBody,
|
||||
geometry::{ColliderHandle, Group, InteractionGroups},
|
||||
|
@ -70,7 +71,6 @@ impl PhysSim {
|
|||
}
|
||||
|
||||
let collider = self.collider_set.get_mut(collider).unwrap();
|
||||
println!("{:?}", collider.collision_groups());
|
||||
collider.set_collision_groups(InteractionGroups::new(Group::GROUP_1, Group::empty()));
|
||||
ship.data.start_land_on(target_handle);
|
||||
return true;
|
||||
|
@ -78,12 +78,7 @@ impl PhysSim {
|
|||
|
||||
/// Finish landing this ship on a planet.
|
||||
/// Called after the landing animation finishes.
|
||||
pub(super) fn finish_land_ship(
|
||||
&mut self,
|
||||
_ct: &Content,
|
||||
collider: ColliderHandle,
|
||||
_target: SystemObjectHandle,
|
||||
) {
|
||||
pub(super) fn finish_land_ship(&mut self, collider: ColliderHandle) {
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
ship.data.finish_land_on();
|
||||
let r = self.rigid_body_set.get_mut(ship.rigid_body).unwrap();
|
||||
|
@ -92,19 +87,31 @@ impl PhysSim {
|
|||
r.set_linvel(nalgebra::Vector2::new(0.0, 0.0), false);
|
||||
}
|
||||
|
||||
pub(super) fn unland_ship(&mut self, ct: &Content, collider: ColliderHandle) {
|
||||
pub(super) fn start_unland_ship(&mut self, ct: &Content, collider: ColliderHandle) {
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
let obj = ship.data.get_state().landed_on().unwrap();
|
||||
let obj = ct.get_system_object(obj);
|
||||
|
||||
let target_pos = Isometry2::new(Vector2::new(obj.pos.x + 100.0, obj.pos.y + 100.0), 1.0);
|
||||
let mut rng = rand::thread_rng();
|
||||
let radius = rng.gen_range(500.0..=1500.0);
|
||||
let angle = rng.gen_range(0.0..std::f32::consts::TAU);
|
||||
let target_offset = Rotation2::new(angle) * Vector2::new(radius, 0.0);
|
||||
let target_trans = Vector2::new(obj.pos.x, obj.pos.y) + target_offset;
|
||||
let target_pos = Isometry2::new(target_trans, angle);
|
||||
|
||||
ship.data.unland(target_pos);
|
||||
ship.data.start_unland_to(ct, target_pos);
|
||||
|
||||
let r = self.rigid_body_set.get_mut(ship.rigid_body).unwrap();
|
||||
r.set_enabled(true);
|
||||
r.set_position(target_pos, true);
|
||||
r.set_position(
|
||||
Isometry2::new(Vector2::new(obj.pos.x, obj.pos.y), angle),
|
||||
true,
|
||||
);
|
||||
}
|
||||
|
||||
pub(super) fn finish_unland_ship(&mut self, collider: ColliderHandle) {
|
||||
let ship = self.ships.get_mut(&collider).unwrap();
|
||||
ship.data.finish_unland_to();
|
||||
self.collider_set
|
||||
.get_mut(ship.collider)
|
||||
.unwrap()
|
||||
|
|
|
@ -15,3 +15,6 @@ readme = { workspace = true }
|
|||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
[dependencies]
|
||||
nalgebra = { workspace = true }
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
//! Various utilities
|
||||
|
||||
use nalgebra::Vector2;
|
||||
|
||||
pub mod constants;
|
||||
pub mod timing;
|
||||
|
||||
|
@ -9,3 +11,9 @@ pub mod timing;
|
|||
pub fn to_radians(degrees: f32) -> f32 {
|
||||
return (degrees / 360.0) * std::f32::consts::TAU;
|
||||
}
|
||||
|
||||
/// Compute the clockwise angle between two vectors
|
||||
/// Returns a value in [0, 2pi]
|
||||
pub fn clockwise_angle(a: &Vector2<f32>, b: &Vector2<f32>) -> f32 {
|
||||
(a.x * b.y - b.x * a.y).atan2(a.dot(&b))
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue