Improved ship unlanding

master
Mark 2024-01-14 11:11:29 -08:00
parent bbf47e29d5
commit e850a13f71
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
9 changed files with 129 additions and 120 deletions

View File

@ -86,6 +86,7 @@ fn main() -> Result<()> {
if let Some(o) = o {
match o.data.get_state() {
ShipState::Landing { .. }
| ShipState::UnLanding { .. }
| ShipState::Collapsing { .. }
| ShipState::Flying { .. } => {
let r =
@ -96,11 +97,6 @@ fn main() -> Result<()> {
None
}
}
ShipState::UnLanding { .. } => {
let pos =
o.data.get_state().unlanding_position(&content).unwrap();
Some(Vector2::new(pos.x, pos.y))
}
ShipState::Landed { target } => {
let b = content.get_system_object(*target);

View File

@ -36,7 +36,7 @@ impl GPUState {
ship_cnt = state.ct.get_ship(ship.data.get_content());
}
ShipState::Landing { current_z, .. } => {
ShipState::UnLanding { current_z, .. } | ShipState::Landing { current_z, .. } => {
let r = state.systemsim.get_rigid_body(ship.rigid_body).unwrap();
let pos = *r.translation();
ship_pos = Point3::new(pos.x, pos.y, *current_z);
@ -44,13 +44,6 @@ impl GPUState {
ship_ang = ship_rot.angle();
ship_cnt = state.ct.get_ship(ship.data.get_content());
}
ShipState::UnLanding { .. } => {
ship_pos = ship.data.get_state().unlanding_position(state.ct).unwrap();
//ship_ang = 0.0 + ((to_angle - 0.0) * 1f32.min(elapsed / 1.0));
ship_ang = 0.0;
ship_cnt = state.ct.get_ship(ship.data.get_content());
}
}
// Position adjusted for parallax
@ -112,8 +105,9 @@ impl GPUState {
let flare = ship.data.get_outfits().get_flare_sprite(state.ct);
if {
let is_flying = match ship.data.get_state() {
ShipState::Flying { .. } => true,
ShipState::Landing { .. } => true,
ShipState::Flying { .. }
| ShipState::UnLanding { .. }
| ShipState::Landing { .. } => true,
_ => false,
};
ship.get_controls().thrust && flare.is_some() && is_flying

View File

@ -1,6 +1,6 @@
use galactica_system::data::ShipState;
use galactica_util::{constants::UI_SPRITE_INSTANCE_LIMIT, to_radians};
use nalgebra::{Point2, Vector2};
use galactica_util::{clockwise_angle, constants::UI_SPRITE_INSTANCE_LIMIT, to_radians};
use nalgebra::{Point2, Rotation2, Vector2};
use crate::{
datastructs::RenderState,
@ -41,21 +41,15 @@ impl Radar {
match player_ship.data.get_state() {
ShipState::Dead => {}
ShipState::UnLanding { .. } => {
let pos = player_ship
.data
.get_state()
.unlanding_position(&input.ct)
.unwrap();
self.last_player_position = Point2::new(pos.x, pos.y)
}
ShipState::Landed { target } => {
let landed_body = input.ct.get_system_object(*target);
self.last_player_position = Point2::new(landed_body.pos.x, landed_body.pos.y);
}
ShipState::Landing { .. } | ShipState::Flying { .. } | ShipState::Collapsing { .. } => {
ShipState::UnLanding { .. }
| ShipState::Landing { .. }
| ShipState::Flying { .. }
| ShipState::Collapsing { .. } => {
let player_body = input
.systemsim
.get_rigid_body(player_ship.rigid_body)

View File

@ -1,5 +1,5 @@
use galactica_content::{Content, FactionHandle, GunPoint, Outfit, ShipHandle, SystemObjectHandle};
use nalgebra::{Point2, Point3};
use nalgebra::Isometry2;
use rand::{rngs::ThreadRng, Rng};
use rapier2d::math::Isometry;
use std::{collections::HashMap, time::Instant};
@ -65,17 +65,14 @@ pub enum ShipState {
/// This ship is taking off from a planet
/// (playing the animation)
UnLanding {
/// The point, in world coordinates, to which we're going
/// The point to which we're going, in world coordinates
to_position: Isometry<f32>,
/// The planet we're taking off from
from: SystemObjectHandle,
/// The total amount of time, in seconds, we will spend taking off
total: f32,
/// The amount of time we've already spent playing this unlanding sequence
elapsed: f32,
/// Our current z-coordinate
current_z: f32,
},
}
@ -99,42 +96,6 @@ impl ShipState {
_ => None,
}
}
/// Compute position of this ship's sprite during its unlanding sequence
pub fn unlanding_position(&self, ct: &Content) -> Option<Point3<f32>> {
match self {
Self::UnLanding {
to_position,
from,
total,
elapsed,
..
} => Some({
let from = ct.get_system_object(*from);
let t = Point2::new(to_position.translation.x, to_position.translation.y);
let diff = t - Point2::new(from.pos.x, from.pos.y);
//let diff = diff - diff.normalize() * (target.size / 2.0) * 0.8;
// TODO: improve animation
// TODO: fade
// TODO: atmosphere burn
// TODO: land at random point
// TODO: don't jump camera
// TODO: time by distance
// TODO: keep momentum
let pos = Point2::new(from.pos.x, from.pos.y) + (diff * (elapsed / total));
Point3::new(
pos.x,
pos.y,
from.pos.z + ((1.0 - from.pos.z) * (elapsed / total)),
)
}),
_ => None,
}
}
}
/// Represents all attributes of a single ship
@ -245,28 +206,57 @@ impl ShipData {
self.state = ShipState::Landed { target };
}
_ => {
unreachable!("Called `finish_land_on` on a ship that isn't flying!")
unreachable!("Called `finish_land_on` on a ship that isn't landing!")
}
};
}
/// Take off from `target`
pub fn unland(&mut self, to_position: Isometry<f32>) {
/// Land this ship on `target`
/// This does NO checks (speed, range, etc).
/// That is the simulation's responsiblity.
///
/// Will panic if we're not flying.
pub fn start_unland_to(&mut self, ct: &Content, to_position: Isometry2<f32>) {
match self.state {
ShipState::Landed { target } => {
let obj = ct.get_system_object(target);
self.state = ShipState::UnLanding {
to_position,
from: target,
total: 2.0,
elapsed: 0.0,
current_z: obj.pos.z,
};
}
_ => {
unreachable!("Called `unland` on a ship that isn't landed!")
unreachable!("Called `start_unland_to` on a ship that isn't landed!")
}
};
}
/// When unlanding, update z position.
/// Will panic if we're not unlanding
pub fn set_unlanding_z(&mut self, z: f32) {
match &mut self.state {
ShipState::UnLanding {
ref mut current_z, ..
} => *current_z = z,
_ => unreachable!("Called `set_unlanding_z` on a ship that isn't unlanding!"),
}
}
/// Finish unlanding sequence
/// Will panic if we're not unlanding
pub fn finish_unland_to(&mut self) {
match self.state {
ShipState::UnLanding { .. } => {
self.state = ShipState::Flying {
autopilot: ShipAutoPilot::None,
}
}
_ => {
unreachable!("Called `finish_unland_to` on a ship that isn't unlanding!")
}
};
}
/// Add an outfit to this ship
pub fn add_outfit(&mut self, o: &Outfit) -> super::OutfitAddResult {
let r = self.outfits.add(o);
@ -331,20 +321,7 @@ impl ShipData {
/// Update this ship's state by `t` seconds
pub(crate) fn step(&mut self, t: f32) {
match self.state {
ShipState::Landing { .. } => {}
ShipState::UnLanding {
ref mut elapsed,
total,
..
} => {
*elapsed += t;
if *elapsed >= total {
self.state = ShipState::Flying {
autopilot: ShipAutoPilot::None,
};
}
}
ShipState::UnLanding { .. } | ShipState::Landing { .. } => {}
ShipState::Landed { .. } => {
// Cooldown guns

View File

@ -1,7 +1,6 @@
use std::collections::HashMap;
use galactica_content::SystemObjectHandle;
use galactica_util::to_radians;
use galactica_util::{clockwise_angle, to_radians};
use nalgebra::Vector2;
use rapier2d::{dynamics::RigidBodySet, geometry::ColliderHandle};
@ -16,23 +15,21 @@ use crate::phys::{
/// Land this ship on the given object
pub fn auto_landing(
res: &PhysStepResources,
_res: &PhysStepResources,
rigid_bodies: &RigidBodySet,
ships: &HashMap<ColliderHandle, PhysSimShip>,
this_ship: ColliderHandle,
target_handle: SystemObjectHandle,
target_pos: Vector2<f32>,
) -> Option<ShipControls> {
let rigid_body_handle = ships.get(&this_ship).unwrap().rigid_body;
let rigid_body = rigid_bodies.get(rigid_body_handle).unwrap();
let target_obj = res.ct.get_system_object(target_handle);
let target_pos = Vector2::new(target_obj.pos.x, target_obj.pos.y);
let my_pos = *rigid_body.translation();
let my_rot = rigid_body.rotation() * Vector2::new(1.0, 0.0);
let my_vel = rigid_body.linvel();
let my_angvel = rigid_body.angvel();
let v_t = target_pos - my_pos; // Vector to target
let v_d = v_t - my_vel; // Desired thrust vector
let angle_delta = (my_rot.x * v_d.y - v_d.x * my_rot.y).atan2(my_rot.dot(&v_d));
let angle_delta = clockwise_angle(&my_rot, &v_d);
let mut controls = ShipControls::new();
if angle_delta < 0.0 && my_angvel > -0.3 {

View File

@ -100,11 +100,11 @@ impl PhysSimShip {
self.step_effects(res, rigid_body, collider);
}
ShipState::Landing { .. } => {
ShipState::UnLanding { .. } | ShipState::Landing { .. } => {
self.step_physics(res, rigid_body, collider);
}
ShipState::UnLanding { .. } | ShipState::Dead | ShipState::Landed { .. } => {}
ShipState::Dead | ShipState::Landed { .. } => {}
}
}

View File

@ -138,7 +138,7 @@ impl PhysSim {
ShipState::Landed { .. } => {
if player.input.pressed_land() {
self.unland_ship(ct, player.ship.unwrap());
self.start_unland_ship(ct, player.ship.unwrap());
}
}
};

View File

@ -9,7 +9,11 @@ use rapier2d::{
use crate::{
data::{ShipAutoPilot, ShipState},
phys::{controller::autopilot, objects::PhysProjectile, ParticleBuilder, PhysStepResources},
phys::{
controller::autopilot,
objects::{PhysProjectile, ShipControls},
ParticleBuilder, PhysStepResources,
},
};
use super::PhysSim;
@ -36,9 +40,7 @@ impl PhysSim {
to_remove.push(collider);
}
ShipState::UnLanding { .. }
| ShipState::Landed { .. }
| ShipState::Collapsing { .. } => {
ShipState::Landed { .. } | ShipState::Collapsing { .. } => {
let ship = self.ships.get_mut(&collider).unwrap();
ship.step(
res,
@ -47,6 +49,48 @@ impl PhysSim {
);
}
ShipState::UnLanding {
to_position,
current_z,
from,
} => {
let from_obj = res.ct.get_system_object(*from);
let controls = autopilot::auto_landing(
&res,
&self.rigid_body_set,
&self.ships,
ship.collider,
Vector2::new(to_position.translation.x, to_position.translation.y),
);
let r = &mut self.rigid_body_set[ship.rigid_body];
let max_d = (Vector2::new(from_obj.pos.x, from_obj.pos.y)
- Vector2::new(to_position.translation.x, to_position.translation.y))
.magnitude();
let now_d = (r.translation()
- Vector2::new(to_position.translation.x, to_position.translation.y))
.magnitude();
let f = now_d / max_d;
let current_z = *current_z;
let ship = self.ships.get_mut(&collider).unwrap();
let zdist = 1.0 - from_obj.pos.z;
if current_z <= 1.0 {
self.finish_unland_ship(collider);
} else if current_z <= 1.5 {
ship.data
.set_unlanding_z(1f32.max(current_z - (0.5 * res.t) / 0.5));
ship.controls = ShipControls::new();
} else {
ship.data.set_unlanding_z(1.0 - zdist * f);
if let Some(controls) = controls {
ship.controls = controls;
}
ship.step(res, r, &mut self.collider_set[ship.collider])
};
}
ShipState::Landing { target, current_z } => {
let target_obj = res.ct.get_system_object(*target);
let controls = autopilot::auto_landing(
@ -54,17 +98,16 @@ impl PhysSim {
&self.rigid_body_set,
&self.ships,
ship.collider,
*target,
Vector2::new(target_obj.pos.x, target_obj.pos.y),
);
let current_z = *current_z;
let target = *target;
let ship = self.ships.get_mut(&collider).unwrap();
let r = &mut self.rigid_body_set[ship.rigid_body];
let zdist = target_obj.pos.z - 1.0;
if current_z >= target_obj.pos.z {
self.finish_land_ship(res.ct, collider, target);
self.finish_land_ship(collider);
} else {
ship.data.set_landing_z(current_z + zdist * res.t / 2.0);
@ -82,12 +125,13 @@ impl PhysSim {
ShipAutoPilot::Landing {
target: target_handle,
} => {
let target_obj = res.ct.get_system_object(*target_handle);
let controls = autopilot::auto_landing(
&res,
&self.rigid_body_set,
&self.ships,
ship.collider,
*target_handle,
Vector2::new(target_obj.pos.x, target_obj.pos.y),
);
let landed = self.try_land_ship(res.ct, collider, *target_handle);

View File

@ -1,5 +1,6 @@
use galactica_content::{Content, Relationship, SystemObjectHandle};
use nalgebra::{Isometry2, Point2, Vector2};
use nalgebra::{Isometry2, Point2, Rotation2, Vector2};
use rand::Rng;
use rapier2d::{
dynamics::RigidBody,
geometry::{ColliderHandle, Group, InteractionGroups},
@ -70,7 +71,6 @@ impl PhysSim {
}
let collider = self.collider_set.get_mut(collider).unwrap();
println!("{:?}", collider.collision_groups());
collider.set_collision_groups(InteractionGroups::new(Group::GROUP_1, Group::empty()));
ship.data.start_land_on(target_handle);
return true;
@ -78,12 +78,7 @@ impl PhysSim {
/// Finish landing this ship on a planet.
/// Called after the landing animation finishes.
pub(super) fn finish_land_ship(
&mut self,
_ct: &Content,
collider: ColliderHandle,
_target: SystemObjectHandle,
) {
pub(super) fn finish_land_ship(&mut self, collider: ColliderHandle) {
let ship = self.ships.get_mut(&collider).unwrap();
ship.data.finish_land_on();
let r = self.rigid_body_set.get_mut(ship.rigid_body).unwrap();
@ -92,19 +87,31 @@ impl PhysSim {
r.set_linvel(nalgebra::Vector2::new(0.0, 0.0), false);
}
pub(super) fn unland_ship(&mut self, ct: &Content, collider: ColliderHandle) {
pub(super) fn start_unland_ship(&mut self, ct: &Content, collider: ColliderHandle) {
let ship = self.ships.get_mut(&collider).unwrap();
let obj = ship.data.get_state().landed_on().unwrap();
let obj = ct.get_system_object(obj);
let target_pos = Isometry2::new(Vector2::new(obj.pos.x + 100.0, obj.pos.y + 100.0), 1.0);
let mut rng = rand::thread_rng();
let radius = rng.gen_range(500.0..=1500.0);
let angle = rng.gen_range(0.0..std::f32::consts::TAU);
let target_offset = Rotation2::new(angle) * Vector2::new(radius, 0.0);
let target_trans = Vector2::new(obj.pos.x, obj.pos.y) + target_offset;
let target_pos = Isometry2::new(target_trans, angle);
ship.data.unland(target_pos);
ship.data.start_unland_to(ct, target_pos);
let r = self.rigid_body_set.get_mut(ship.rigid_body).unwrap();
r.set_enabled(true);
r.set_position(target_pos, true);
r.set_position(
Isometry2::new(Vector2::new(obj.pos.x, obj.pos.y), angle),
true,
);
}
pub(super) fn finish_unland_ship(&mut self, collider: ColliderHandle) {
let ship = self.ships.get_mut(&collider).unwrap();
ship.data.finish_unland_to();
self.collider_set
.get_mut(ship.collider)
.unwrap()