205 lines
4.2 KiB
TeX
205 lines
4.2 KiB
TeX
\section{Braids}
|
|
|
|
\definition{}
|
|
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par
|
|
Two braids are shown below.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[rotate=90, name prefix=braid] {
|
|
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
|
};
|
|
|
|
\braidbars{4}
|
|
\end{tikzpicture}
|
|
\hfill
|
|
\begin{tikzpicture}
|
|
\pic[rotate=90, name prefix=braid] {
|
|
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
|
};
|
|
\braidbars{4}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\problem{}
|
|
Convince yourself that the braids above are equivalent.
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
\definition{}
|
|
A braid can be \textit{closed} by conecting its ends:
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[rotate=90, name prefix=braid] {
|
|
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
|
|
};
|
|
|
|
\closebraid{4}
|
|
\widebraidbars{4}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\problem{}
|
|
When will a closed braid form a knot? \par
|
|
When will a closed braid form a link?
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
|
Draw a braid that creates a $3$-unlink when closed.
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
\problem{}<braidify>
|
|
Draw the following knots as closed braids.
|
|
|
|
\begin{center}
|
|
\hfill
|
|
\begin{minipage}[t]{0.13\textwidth}
|
|
\begin{center}
|
|
\includegraphics[width=\linewidth]{images/trefoil.png}
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}[t]{0.15\textwidth}
|
|
\begin{center}
|
|
\includegraphics[width=\linewidth]{images/closed braid a.png}
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}[t]{0.15\textwidth}
|
|
\begin{center}
|
|
\includegraphics[width=\linewidth]{images/closed braid b.png}
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill~
|
|
\end{center}
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
\problem{}
|
|
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
|
|
|
|
\vspace{2mm}
|
|
|
|
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
|
|
|
|
\begin{center}
|
|
\hfill
|
|
\begin{minipage}[t]{0.2\textwidth}
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
name prefix = braid,
|
|
braid/number of strands = 3
|
|
] {
|
|
braid = {s_1}
|
|
};
|
|
\end{tikzpicture} \par
|
|
\texttt{1} crossing
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}[t]{0.2\textwidth}
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
name prefix = braid,
|
|
braid/number of strands = 3
|
|
] {
|
|
braid = {s_1^{-1}}
|
|
};
|
|
\end{tikzpicture} \par
|
|
\texttt{-1} crossing
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}[t]{0.2\textwidth}
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
name prefix = braid,
|
|
braid/number of strands = 3
|
|
] {
|
|
braid = {s_2}
|
|
};
|
|
\end{tikzpicture} \par
|
|
\texttt{2} crossing
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}[t]{0.2\textwidth}
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
name prefix = braid,
|
|
braid/number of strands = 3
|
|
] {
|
|
braid = {s_2^{-2}}
|
|
};
|
|
\end{tikzpicture} \par
|
|
\texttt{-2} crossing
|
|
\end{center}
|
|
\end{minipage}
|
|
\hfill~
|
|
\end{center}
|
|
|
|
\problem{}
|
|
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
|
|
Read the braid right to left, with the \textbf{bottom} string numbered $1$.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
rotate = 90,
|
|
name prefix = braid,
|
|
braid/number of strands = 3
|
|
] {
|
|
% When we rotate a braid
|
|
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
|
|
};
|
|
\labelbraidstart{3}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
|
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
|
|
|
|
\begin{solution}
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\pic[
|
|
rotate = 90,
|
|
name prefix = braid,
|
|
braid/number of strands = 5
|
|
] {
|
|
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
|
|
};
|
|
|
|
\labelbraidstart{5}
|
|
\labelbraidend{5}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{solution}
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|
|
\problem{}
|
|
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
|
|
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
|
|
\hint{This knot has 6 crossings. Use the knot table.}
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
|
Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime.
|
|
|
|
\vfill
|
|
\pagebreak |