\section{Braids} \definition{} A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par Two braids are shown below. \begin{center} \begin{tikzpicture} \pic[rotate=90, name prefix=braid] { braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} } }; \braidbars{4} \end{tikzpicture} \hfill \begin{tikzpicture} \pic[rotate=90, name prefix=braid] { braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} } }; \braidbars{4} \end{tikzpicture} \end{center} \problem{} Convince yourself that the braids above are equivalent. \vfill \pagebreak \definition{} A braid can be \textit{closed} by conecting its ends: \begin{center} \begin{tikzpicture} \pic[rotate=90, name prefix=braid] { braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} } }; \closebraid{4} \widebraidbars{4} \end{tikzpicture} \end{center} \problem{} When will a closed braid form a knot? \par When will a closed braid form a link? \vfill \problem{} Draw a braid that creates a $3$-unlink when closed. \vfill \pagebreak \problem{} Draw the following knots as closed braids. \begin{center} \hfill \begin{minipage}[t]{0.13\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/trefoil.png} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.15\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/closed braid a.png} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.15\textwidth} \begin{center} \includegraphics[width=\linewidth]{images/closed braid b.png} \end{center} \end{minipage} \hfill~ \end{center} \vfill \pagebreak \problem{} We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par \vspace{2mm} For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing. \begin{center} \hfill \begin{minipage}[t]{0.2\textwidth} \begin{center} \begin{tikzpicture} \pic[ name prefix = braid, braid/number of strands = 3 ] { braid = {s_1} }; \end{tikzpicture} \par \texttt{1} crossing \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.2\textwidth} \begin{center} \begin{tikzpicture} \pic[ name prefix = braid, braid/number of strands = 3 ] { braid = {s_1^{-1}} }; \end{tikzpicture} \par \texttt{-1} crossing \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.2\textwidth} \begin{center} \begin{tikzpicture} \pic[ name prefix = braid, braid/number of strands = 3 ] { braid = {s_2} }; \end{tikzpicture} \par \texttt{2} crossing \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.2\textwidth} \begin{center} \begin{tikzpicture} \pic[ name prefix = braid, braid/number of strands = 3 ] { braid = {s_2^{-2}} }; \end{tikzpicture} \par \texttt{-2} crossing \end{center} \end{minipage} \hfill~ \end{center} \problem{} Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par Read the braid right to left, with the \textbf{bottom} string numbered $1$. \begin{center} \begin{tikzpicture} \pic[ rotate = 90, name prefix = braid, braid/number of strands = 3 ] { % When we rotate a braid braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2} }; \labelbraidstart{3} \end{tikzpicture} \end{center} \vfill \problem{} Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$ \begin{solution} \begin{center} \begin{tikzpicture} \pic[ rotate = 90, name prefix = braid, braid/number of strands = 5 ] { braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4} }; \labelbraidstart{5} \labelbraidend{5} \end{tikzpicture} \end{center} \end{solution} \vfill \pagebreak \problem{} Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par \hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$} \hint{This knot has 6 crossings. Use the knot table.} \vfill \problem{} Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime. \vfill \pagebreak