handouts/Advanced/Knots/parts/4 braids.tex

205 lines
4.2 KiB
TeX
Raw Normal View History

2023-05-05 14:29:21 -07:00
\section{Braids}
\definition{}
A \textit{braid} is a set of $n$ strings with fixed ends. Two braids are equivalent if they may be deformed into each other without disconnecting the strings. \par
Two braids are shown below.
\begin{center}
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\braidbars{4}
\end{tikzpicture}
\hfill
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_3 s_2 s_1 s_1^{-1} s_2^{-1} s_3^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\braidbars{4}
\end{tikzpicture}
\end{center}
\problem{}
Convince yourself that the braids above are equivalent.
\vfill
\pagebreak
\definition{}
A braid can be \textit{closed} by conecting its ends:
\begin{center}
\begin{tikzpicture}
\pic[rotate=90, name prefix=braid] {
braid = {s_2^{-1} s_1^{-1} s_2 s_2 s_3^{-1} }
};
\closebraid{4}
\widebraidbars{4}
\end{tikzpicture}
\end{center}
\problem{}
When will a closed braid form a knot? \par
When will a closed braid form a link?
\vfill
\problem{}
Draw a braid that creates a $3$-unlink when closed.
\vfill
\pagebreak
\problem{}<braidify>
Draw the following knots as closed braids.
\begin{center}
\hfill
\begin{minipage}[t]{0.13\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/trefoil.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.15\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/closed braid a.png}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.15\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/closed braid b.png}
\end{center}
\end{minipage}
\hfill~
\end{center}
\vfill
\pagebreak
\problem{}
We can describe the projection of a braid by listing which strings cross over and under each other as we move along the braid. \par
\vspace{2mm}
For example, consider a three-string braid. If the first string crosses over the second, we'll call that a $1$ crossing. If first string crosses \textbf{under} the second, we'll call that a $-1$ crossing.
\begin{center}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_1}
};
\end{tikzpicture} \par
\texttt{1} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_1^{-1}}
};
\end{tikzpicture} \par
\texttt{-1} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_2}
};
\end{tikzpicture} \par
\texttt{2} crossing
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.2\textwidth}
\begin{center}
\begin{tikzpicture}
\pic[
name prefix = braid,
braid/number of strands = 3
] {
braid = {s_2^{-2}}
};
\end{tikzpicture} \par
\texttt{-2} crossing
\end{center}
\end{minipage}
\hfill~
\end{center}
\problem{}
Verify that the following is a $[1, 2, 1, -2, 1, 2]$ braid. \par
Read the braid right to left, with the \textbf{bottom} string numbered $1$.
\begin{center}
\begin{tikzpicture}
\pic[
rotate = 90,
name prefix = braid,
braid/number of strands = 3
] {
% When we rotate a braid
braid = {s_1 s_2 s_1 s_2^{-1} s_1 s_2}
};
\labelbraidstart{3}
\end{tikzpicture}
\end{center}
\vfill
\problem{}
Draw the five-string braid defined by $[1, 3, 4, -3, 2, 4]$
\begin{solution}
\begin{center}
\begin{tikzpicture}
\pic[
rotate = 90,
name prefix = braid,
braid/number of strands = 5
] {
braid = {s_1 s_3 s_4 s_3^{-1} s_2 s_4}
};
\labelbraidstart{5}
\labelbraidend{5}
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
\pagebreak
\problem{}
Identify the knot generated by the 4-string braid $[(-1, 2, 3)^2,~(3)^3]$ \par
\hint{$[(1, 2)^2, 3] = [1, 2, 1, 2, 3]$}
\hint{This knot has 6 crossings. Use the knot table.}
\vfill
\problem{}
Show that the closure of the $n$-string braid $[(1, 2, ..., n-1)^m]$ is a knot iff $m$ and $n$ are coprime.
\vfill
\pagebreak