Compare commits
3 Commits
c29f0d25c7
...
main
Author | SHA1 | Date | |
---|---|---|---|
121780df6c | |||
99344f9aed | |||
095c4b314c |
@ -1,5 +1,6 @@
|
||||
\definition{}
|
||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates.
|
||||
The \textit{integer lattice} $\mathbb{Z}^n$ is the set of points with integer coordinates in $n$ dimensions. \par
|
||||
For example, $\mathbb{Z}^3$ is the set of points $(a, b, c)$ where $a$, $b$, and $c$ are integers.
|
||||
|
||||
\problem{}
|
||||
Draw $\mathbb{Z}^2$.
|
||||
@ -8,12 +9,13 @@ Draw $\mathbb{Z}^2$.
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_k\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_k\}$ \textit{generates} $\mathbb{Z}^n$
|
||||
if every lattice point can be written as
|
||||
$$
|
||||
a_1v_1 + a_2v_2 + ... + a_kv_k
|
||||
$$
|
||||
for integer coefficients $a_i$. \par
|
||||
It is fairly easy to show that $k$ must be at least $n$.
|
||||
\textbf{Bonus:} show that $k$ must be at least $n$.
|
||||
|
||||
\problem{}
|
||||
Which of the following generate $\mathbb{Z}^2$?
|
||||
@ -30,8 +32,7 @@ Which of the following generate $\mathbb{Z}^2$?
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a set of two vectors that generates $\mathbb{Z}^2$. \\
|
||||
Don't say $\{ (0, 1), (1, 0) \}$, that's too easy.
|
||||
Find a set of two vectors other than $\{ (0, 1), (1, 0) \}$ that generates $\mathbb{Z}^2$. \\
|
||||
|
||||
\vfill
|
||||
|
||||
@ -44,7 +45,8 @@ Find a set of vectors that generates $\mathbb{Z}^n$.
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
|
||||
Say we have a generating set of a lattice. \par
|
||||
The \textit{fundamental region} of this set is the $n$-dimensional parallelogram spanned by its members. \par
|
||||
|
||||
\problem{}
|
||||
Draw two fundamental regions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||||
|
@ -1,6 +1,6 @@
|
||||
\section{Minkowski's Theorem}
|
||||
|
||||
\theorem{Blichfeldt's Theorem}
|
||||
\theorem{Blichfeldt's Theorem}<blich>
|
||||
Let $X$ be a finite connected region. If the volume of $X$ is greater than $1$, $X$ must contain two distinct points that differ by an element of $\mathbb{Z}^n$. In other words, there exist distinct $x, y \in X$ so that $x - y \in \mathbb{Z}^n$.
|
||||
|
||||
\vspace{2mm}
|
||||
@ -9,14 +9,22 @@ Intuitively, this means that you can translate $X$ to cover two lattice points a
|
||||
|
||||
|
||||
\problem{}
|
||||
Draw a region in $\mathbb{R}^2$ with volume greater than 1 that contains no lattice points. Find two points in that region which differ by an integer vector.
|
||||
Draw a connected region in $\mathbb{R}^2$ with volume greater than 1 that contains no lattice points. Find two points in that region which differ by an integer vector.
|
||||
\hint{Area is two-dimensional volume.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
The following picture gives an idea for the proof of Blichfeldt's theorem in $\mathbb{Z}^2$. Explain the picture and complete the proof.
|
||||
Draw a \textit{disconnected} region in $\mathbb{R}^2$ with volume greater than 1 that contains no lattice points, \par
|
||||
and show that no two points in that region differ by an integer vector.
|
||||
\note{In other words, show that \ref{blich} indeed requires a connected region.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
The following picture gives an idea for the proof of Blichfeldt's theorem in $\mathbb{Z}^2$. \par
|
||||
Explain the picture and complete the proof.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[angle=90,width=0.5\linewidth]{proof.png}
|
||||
@ -48,10 +56,8 @@ Let $X$ be a region $\in \mathbb{R}^2$ of volume $k$. How many integral points m
|
||||
A region $X$ is \textit{convex} if the line segment connecting any two points in $X$ lies entirely in $X$.
|
||||
|
||||
\problem{}
|
||||
\begin{itemize}
|
||||
\item Draw a convex region in the plane.
|
||||
\item Draw a region that is not convex.
|
||||
\end{itemize}
|
||||
Draw a convex region in two dimensions. \par
|
||||
Then, draw a two-dimensional region that is \textit{not} convex.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
@ -59,23 +65,28 @@ A region $X$ is \textit{convex} if the line segment connecting any two points in
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a region $X$ is \textit{symmetric} if for all points $x \in X$, $-x$ is also in $X$.
|
||||
We say a region $X$ is \textit{symmetric with respect to the origin} if for all points $x \in X$, $-x$ is also in $X$. \par
|
||||
In the following problems, \say{\textit{symmetric}} means \say{symmetric with respect to the origin.}
|
||||
|
||||
\problem{}
|
||||
\begin{itemize}
|
||||
\item Draw a symmetric region.
|
||||
\item Draw an asymmetric region.
|
||||
\end{itemize}
|
||||
Draw a symmetric region. \par
|
||||
Then, draw an asymmetric region.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that a convex symmetric set always contains the origin.
|
||||
|
||||
\vfill
|
||||
|
||||
\theorem{Minkowski's Theorem}<mink>
|
||||
Every convex set in $\mathbb{R}^n$ that is symmetric with respect to the origin and which has a volume greater than $2^n$ contains an integral point that isn't zero.
|
||||
Every convex set in $\mathbb{R}^n$ that is symmetric and has a volume \par
|
||||
greater than $2^n$ contains an integral point that isn't zero.
|
||||
|
||||
|
||||
\problem{}
|
||||
Draw a few sets that satisfy \ref{mink} in $\mathbb{R}^2$. \par
|
||||
What is the simplest region that has the properties listed above?
|
||||
What is a simple class of regions that has the properties listed above?
|
||||
|
||||
\vfill
|
||||
|
||||
|
26
src/Advanced/Wallpaper/main.typ
Normal file
@ -0,0 +1,26 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
// Resources:
|
||||
//
|
||||
// https://eschermath.org/wiki/Wallpaper_Patterns.html
|
||||
// https://mathworld.wolfram.com/WallpaperGroups.html
|
||||
// https://en.wikipedia.org/wiki/Wallpaper_group
|
||||
|
||||
#show: handout.with(
|
||||
title: [Wallpaper Symmetry],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#include "parts/00 intro.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/01 reflect.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/02 rotate.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/03 problems.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/04 theorem.typ"
|
7
src/Advanced/Wallpaper/meta.toml
Normal file
@ -0,0 +1,7 @@
|
||||
[metadata]
|
||||
title = "Wallpaper Symmetries"
|
||||
|
||||
|
||||
[publish]
|
||||
handout = true
|
||||
solutions = true
|
151
src/Advanced/Wallpaper/parts/00 intro.typ
Normal file
@ -0,0 +1,151 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Wallpaper Symmetries
|
||||
|
||||
#definition()
|
||||
A _Euclidean isometry_ is a transformation of the plane that preserves distances. \
|
||||
Intuitively, an isometry moves objects on the plane without deforming them.
|
||||
|
||||
There are four classes of Euclidean isometries:
|
||||
- translations
|
||||
- reflections
|
||||
- rotations
|
||||
- glide reflections
|
||||
#note([We can prove there are no others, but this is beyond the scope of this handout.]) \
|
||||
A simple example of each isometry is shown below:
|
||||
|
||||
#let demo(c) = {
|
||||
let s = 0.5
|
||||
cetz.draw.line(
|
||||
(0, 0),
|
||||
(3 * s, 0),
|
||||
(3 * s, 1 * s),
|
||||
(1 * s, 1 * s),
|
||||
(1 * s, 2 * s),
|
||||
(0, 2 * s),
|
||||
close: true,
|
||||
fill: c,
|
||||
stroke: black + 0mm * s,
|
||||
)
|
||||
}
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: (3.5cm, 3.5cm),
|
||||
row-gutter: 2mm,
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
demo(ored)
|
||||
translate(x: -1.0, y: -1.0)
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Translation
|
||||
],
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
circle((-2, 0), radius: 0.1, stroke: none, fill: black)
|
||||
arc(
|
||||
(-2, 0),
|
||||
radius: 1,
|
||||
anchor: "origin",
|
||||
start: 0deg,
|
||||
stop: -30deg,
|
||||
mode: "PIE",
|
||||
)
|
||||
|
||||
demo(ored)
|
||||
rotate(z: -30deg, origin: (-2, 0))
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Rotation
|
||||
],
|
||||
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
line((-2, 0), (4, 0))
|
||||
|
||||
translate(x: 0, y: 0.25)
|
||||
demo(ored)
|
||||
set-transform(none)
|
||||
|
||||
set-transform((
|
||||
(1, 0, 0, 0),
|
||||
(0, 1, 0, 0),
|
||||
(0, 0, 1, 0),
|
||||
(0, 0, 0, 1),
|
||||
))
|
||||
|
||||
translate(x: 0, y: 0.25)
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
Reflection
|
||||
],
|
||||
[
|
||||
#cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
|
||||
demo(ored)
|
||||
|
||||
set-transform((
|
||||
(1, 0, 0, 0),
|
||||
(0, 1, 0, 0),
|
||||
(0, 0, 0, 0),
|
||||
(0, 0, 0, 0),
|
||||
))
|
||||
translate(x: 2, y: 0)
|
||||
|
||||
demo(oblue)
|
||||
|
||||
set-transform(none)
|
||||
line((-1, 0), (5, 0))
|
||||
})
|
||||
#v(1fr)
|
||||
Glide reflection
|
||||
],
|
||||
)
|
||||
|
||||
#definition()
|
||||
A _wallpaper_ is a two-dimensional pattern that...
|
||||
- has translational symmetry in at least two non-parallel directions (and therefore fills the plane) \
|
||||
#note[
|
||||
"Translational symmetry" means that we can slide the entire wallpaper in some direction, \
|
||||
eventually mapping the pattern to itself.]
|
||||
- has a countable number of reflection, rotation, or glide symmetries. \
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Is a plain square grid a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
Yes!
|
||||
- It has translational symmetry in the horizontal and vertical directions
|
||||
- It has a countable number of symmetries---namely, six distinct mirror lines (horizontal, vertical, and diagonal) duplicated once per square.
|
||||
- A square grid is #sym.convolve`442`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Is the empty plane a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
No, since it has uncountably many symmetries.
|
||||
])
|
||||
|
||||
#v(1fr)
|
132
src/Advanced/Wallpaper/parts/01 reflect.typ
Normal file
@ -0,0 +1,132 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Mirror Symmetry
|
||||
|
||||
#definition()
|
||||
A _reflection_ is a transformation of the plane obtained by reflecting all points about a line. \
|
||||
If this reflection maps the wallpaper to itself, we have a _mirror symmetry_. \
|
||||
|
||||
If $n$ such mirror lines intersect at a point, they form a _mirror node of order $n$_. \
|
||||
#note[Mirror nodes with order 1 do not exist (i.e, $n >= 2$). A line does not intersect itself!]
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Two mirror nodes on a wallpaper are identical if we can map one to the other with a translation and a rotation while preserving the pattern on that wallpaper.
|
||||
|
||||
#problem(label: "pat333")
|
||||
Find all three distinct mirror nodes in the following pattern. \
|
||||
What is the order of each node? \
|
||||
#hint([
|
||||
You may notice rotational symmetry in this pattern. \
|
||||
Don't worry about that yet, we'll discuss it later.
|
||||
])
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 45mm,
|
||||
image("../res/wolfram/p3m1.svg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
The mirror nodes are:
|
||||
- the center of the amber cross
|
||||
- the center of each right-handed group of three adjacent hexagons
|
||||
- the center of each left-handed group of three adjacent hexagons
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#definition()
|
||||
_Orbifold notation_ gives us a way to describe the symmetries of a wallpaper. \
|
||||
It defines a _signature_ that fully describes all the symmetries of a given pattern. \
|
||||
We will introduce orbifold notation one symmetry at a time.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, mirror nodes are denoted by a #sym.convolve followed by a list of integer. \
|
||||
Every integer $n$ following a #sym.convolve denotes a mirror node of order $n$.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
The order of these integers doesn't matter. #sym.convolve`234` and #sym.convolve`423` are the same signature. \
|
||||
However, we usually denote $n$-fold symmetries in descending order (that is, like #sym.convolve`432`). \
|
||||
If we have many nodes of the same order, integers may be repeated.
|
||||
|
||||
|
||||
#problem()
|
||||
What is the signature of the wallpaper in @pat333? \
|
||||
#hint[Again, ignore rotational symmetry for now.]
|
||||
#solution([It is #sym.convolve`333`])
|
||||
|
||||
|
||||
// MARK: page
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/*632-a.png", height: 100%),
|
||||
)
|
||||
|
||||
|
||||
#solution([
|
||||
It is #sym.convolve`632`:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 40mm,
|
||||
image("../res/*632-b.png", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper pattern with signature #sym.convolve`2222`
|
||||
|
||||
#solution([
|
||||
Sample solutions are below.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 50mm,
|
||||
image("../res/wolfram/pmm.svg", height: 100%),
|
||||
image("../res/escher/pmm.svg", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#remark()
|
||||
In an exceptional case, we have two parallel mirror lines. \
|
||||
Consider the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/**.png", height: 100%),
|
||||
)
|
||||
|
||||
The signature of this pattern is #sym.convolve#sym.convolve
|
||||
|
||||
#problem()
|
||||
Draw another wallpaper pattern with signature #sym.convolve#sym.convolve.
|
||||
|
||||
#v(1fr)
|
181
src/Advanced/Wallpaper/parts/02 rotate.typ
Normal file
@ -0,0 +1,181 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Rotational Symmetry
|
||||
|
||||
|
||||
#definition()
|
||||
A wallpaper may also have $n$-fold rotational symmetry about a point.
|
||||
#v(2mm)
|
||||
This means there are no more than $n$ rotations around that point that map the wallpaper to itself.
|
||||
#v(2mm)
|
||||
As before, two points of rotational symmetry are identical if we can perform a translation and rotation that maps one to the other without changing the wallpaper.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, rotation is specified similarly to reflection, but uses the prefix #sym.diamond.stroked.small. \
|
||||
For example:
|
||||
- #sym.diamond.stroked.small`333` denotes a pattern with three distinct centers of rotation of order 3.
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2` denotes a pattern with one rotation center of order 4 and one mirror node of order 2.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 50mm,
|
||||
image("../res/333.png", height: 100%), image("../res/3*3.png", height: 100%),
|
||||
)
|
||||
|
||||
|
||||
#problem()
|
||||
Find the three rotation centers in the left wallpaper. \
|
||||
What are their orders?
|
||||
|
||||
#solution([This is #sym.diamond.stroked.small`333`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Find the signature of the pattern on the right.
|
||||
|
||||
#solution([This is #sym.diamond.stroked.small`3`#sym.convolve`3`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#remark()
|
||||
You may have noticed that we could have an ambiguous classification, since two reflections are equivalent to a translation and a rotation.
|
||||
We thus make the following distinction: _rotational symmetry that can be explained by reflection is not rotational symmetry._
|
||||
|
||||
#v(2mm)
|
||||
|
||||
In other words, when classifying a pattern...
|
||||
- we first find all mirror symmetries,
|
||||
- then all rotational symmetries that are not accounted for by reflection.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
// MARK: glide
|
||||
|
||||
= Glide Reflections
|
||||
|
||||
#definition()
|
||||
Another type of symmetry is the _glide reflection_, denoted #sym.times.
|
||||
|
||||
A glide reflection is the result of a translation along a line followed by reflection about that line.
|
||||
|
||||
For example, consider the following pattern:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/*x-a.png", height: 100%),
|
||||
)
|
||||
|
||||
#problem()
|
||||
Convince yourself that all mirror lines in this pattern are _not_ distinct. /
|
||||
In other words, this pattern has only one mirror symmetry.
|
||||
|
||||
#solution([
|
||||
There may seem to be two, but they are identical. \
|
||||
We can translate one onto the other.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Use the following picture to find the glide reflection in the above pattern.
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/*x-b.png", height: 100%),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#remark()
|
||||
The signature of this wallpaper is #sym.convolve#sym.times.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#definition()
|
||||
If none of the above symmetries appear in a pattern, then we only have simple translational symmetry. We denote this with the signature #sym.circle.small.
|
||||
|
||||
#remark()
|
||||
In summary, to find the signature of a pattern:
|
||||
- find the mirror lines (#sym.convolve) and the distinct intersections;
|
||||
- then find the rotation centers (#sym.diamond.stroked.small) not explained by reflection;
|
||||
- then find all glide reflections (#sym.times) that do not cross a mirror line.
|
||||
- If we have none of the above, our pattern must be #sym.circle.small.
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 50mm,
|
||||
image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.convolve#sym.times.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/wiki/Wallpaper_group-p4g-2.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.diamond.stroked.small`4`#sym.convolve`2`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Find two glide reflections in the following pattern.\
|
||||
#note[(and thus show that its signature is #sym.times#sym.times.)]
|
||||
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/xx-b.png", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 40mm,
|
||||
image("../res/xx-a.png", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
67
src/Advanced/Wallpaper/parts/03 problems.typ
Normal file
@ -0,0 +1,67 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#let pat(img, sol) = {
|
||||
problem()
|
||||
|
||||
table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 80mm,
|
||||
image(img, height: 100%), image(img, height: 100%),
|
||||
)
|
||||
|
||||
solution(sol)
|
||||
v(1fr)
|
||||
}
|
||||
|
||||
= A few problems
|
||||
|
||||
Find the signatures of the following patterns. Mark all mirror nodes, rotation centers, and glide reflections. \
|
||||
Each pattern is provided twice for convenience.
|
||||
|
||||
|
||||
#pat("../res/wolfram/cm.svg", [#sym.times#sym.convolve])
|
||||
#pat("../res/wolfram/cmm.svg", [#sym.diamond.stroked`2`#sym.convolve`22`])
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
|
||||
#pat("../res/wolfram/p3.svg", [#sym.diamond.stroked`333`])
|
||||
#pat("../res/wolfram/p3m1.svg", [#sym.convolve`333`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4.svg", [#sym.diamond.stroked`442`])
|
||||
#pat("../res/wolfram/p4m.svg", [#sym.convolve`442`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p6.svg", [#sym.diamond.stroked`632`])
|
||||
#pat("../res/wolfram/p6m.svg", [#sym.convolve`632`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4g.svg", [#sym.diamond.stroked`4`#sym.convolve`2`])
|
||||
#pat("../res/wolfram/p31m.svg", [#sym.diamond.stroked`3`#sym.convolve`3`])
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper with the signature #sym.convolve`442` \
|
||||
#note[Make sure there are no other symmetries!]
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#pat("../res/wolfram/pgg.svg", [#sym.diamond.stroked`22`#sym.times])
|
||||
#pat("../res/wolfram/pmg.svg", [#sym.diamond.stroked`22`#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/pg.svg", [#sym.times#sym.times])
|
||||
#pat("../res/wolfram/pm.svg", [#sym.convolve#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p2.svg", [#sym.diamond.stroked`2222`])
|
||||
#pat("../res/wolfram/pmm.svg", [#sym.convolve`2222`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p1.svg", [#sym.circle.small])
|
100
src/Advanced/Wallpaper/parts/04 theorem.typ
Normal file
@ -0,0 +1,100 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= The Signature-Cost Theorem
|
||||
|
||||
#definition()
|
||||
First, we'll associate a _cost_ to each type of symmetry in orbifold notation:
|
||||
|
||||
#v(4mm)
|
||||
#align(
|
||||
center,
|
||||
table(
|
||||
stroke: (1pt, 1pt),
|
||||
align: center,
|
||||
columns: (auto, auto, auto, auto),
|
||||
[*Symbol*], [*Cost*], [*Symbol*], [*Cost*],
|
||||
[#sym.circle.small], [2], [#sym.times or #sym.convolve], [1],
|
||||
[#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4],
|
||||
[#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3],
|
||||
[#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots],
|
||||
[#sym.diamond.stroked.small`n`],
|
||||
[$(n-1) / n$],
|
||||
[#sym.convolve`n`],
|
||||
[$(n-1) / (2n)$],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
We then calculate the total "cost" of a signature by adding up the costs of each component.
|
||||
|
||||
For example, a pattern with signature #sym.convolve`333` has cost 2:
|
||||
|
||||
#v(2mm)
|
||||
|
||||
$
|
||||
2 / 3 + 2 / 3 + 2 / 3 = 2
|
||||
$
|
||||
|
||||
#problem()
|
||||
Calculate the costs of the following signatures:
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`
|
||||
- #sym.convolve#sym.convolve
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`:
|
||||
|
||||
#solution([
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$
|
||||
- #sym.convolve#sym.convolve: $1 + 1 = 2$
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#theorem(name: "Signature Cost Theorem")
|
||||
The signatures of planar wallpaper patterns are exactly those with total cost 2. \
|
||||
#note([We will not prove this theorem today, accept it without proof.])
|
||||
|
||||
#problem()
|
||||
Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \
|
||||
Which preserve orientation? Which reverse orientation?
|
||||
|
||||
#solution([
|
||||
- Reflections and glide reflections reverse orientation (directions of spirals).
|
||||
- Translation and rotation preserve orientation.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the signatures consisting of only mirror symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the remaining signatures. \
|
||||
Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \
|
||||
#hint([They are all shown in the problems section.])
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`,
|
||||
#sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve,
|
||||
#sym.times#sym.times, #sym.times#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
BIN
src/Advanced/Wallpaper/res/**.png
Normal file
After Width: | Height: | Size: 535 KiB |
BIN
src/Advanced/Wallpaper/res/*632-a.png
Normal file
After Width: | Height: | Size: 484 KiB |
BIN
src/Advanced/Wallpaper/res/*632-b.png
Normal file
After Width: | Height: | Size: 280 KiB |
BIN
src/Advanced/Wallpaper/res/*x-a.png
Normal file
After Width: | Height: | Size: 666 KiB |
BIN
src/Advanced/Wallpaper/res/*x-b.png
Normal file
After Width: | Height: | Size: 160 KiB |
BIN
src/Advanced/Wallpaper/res/3*3.png
Normal file
After Width: | Height: | Size: 533 KiB |
BIN
src/Advanced/Wallpaper/res/333.png
Normal file
After Width: | Height: | Size: 568 KiB |
86
src/Advanced/Wallpaper/res/escher/pmm.svg
Normal file
@ -0,0 +1,86 @@
|
||||
<?xml version="1.0" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN" "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd">
|
||||
<svg xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="10.16cm" height="5.08cm" viewBox="0 0 384 192">
|
||||
<title>pmm</title>
|
||||
<desc>Exported by Tess 1.70.</desc>
|
||||
<clipPath id="mainclip"><rect x="0" y="0" width="384" height="192"/></clipPath>
|
||||
<g style="fill-rule:evenodd; stroke-linejoin:round; stroke-linecap:round; clip-path:url(#mainclip)">
|
||||
<defs>
|
||||
<g id="Tess0p">
|
||||
<path d="
|
||||
M7.1306642022,-41.0013191628
|
||||
L7.1306642022,-7.1306642022
|
||||
L89.1333025278,-7.1306642022
|
||||
L7.1306642022,-42.7839852134
|
||||
"/></g>
|
||||
<g id="Tess0" style="fill:none; stroke:none"><use xlink:href="#Tess0p"/></g>
|
||||
<g id="Tess1" style="fill:none; stroke:rgb(0,0,0); stroke-width:1.7826660506"><use xlink:href="#Tess0p"/></g>
|
||||
</defs>
|
||||
<g transform="translate(192,96) rotate(0) scale(0.5609575611,0.5609575611)">
|
||||
<g transform="translate(-405.2631578947,-100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,0)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,200)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,0)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,200)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-100)"><use xlink:href="#Tess1"/></g>
|
||||
<g><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,200)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,0)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,100)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,200)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,0) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,0) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,-200) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,-100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,0) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,100) rotate(180)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,-100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,0) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,100) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(405.2631578947,200) rotate(180) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-405.2631578947,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(-202.6315789474,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(0,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-200) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,-100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,0) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
<g transform="translate(202.6315789474,100) scale(1,-1)"><use xlink:href="#Tess1"/></g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 6.3 KiB |
BIN
src/Advanced/Wallpaper/res/wiki/Wallpaper_group-cm-4.jpg
Normal file
After Width: | Height: | Size: 800 KiB |
BIN
src/Advanced/Wallpaper/res/wiki/Wallpaper_group-p4g-2.jpg
Normal file
After Width: | Height: | Size: 436 KiB |
6662
src/Advanced/Wallpaper/res/wolfram/all.svg
Normal file
After Width: | Height: | Size: 991 KiB |
8784
src/Advanced/Wallpaper/res/wolfram/cm.svg
Normal file
After Width: | Height: | Size: 233 KiB |
8192
src/Advanced/Wallpaper/res/wolfram/cmm.svg
Normal file
After Width: | Height: | Size: 236 KiB |
6392
src/Advanced/Wallpaper/res/wolfram/p1.svg
Normal file
After Width: | Height: | Size: 196 KiB |
6958
src/Advanced/Wallpaper/res/wolfram/p2.svg
Normal file
After Width: | Height: | Size: 178 KiB |
7653
src/Advanced/Wallpaper/res/wolfram/p3.svg
Normal file
After Width: | Height: | Size: 205 KiB |
11315
src/Advanced/Wallpaper/res/wolfram/p31m.svg
Normal file
After Width: | Height: | Size: 299 KiB |
9995
src/Advanced/Wallpaper/res/wolfram/p3m1.svg
Normal file
After Width: | Height: | Size: 264 KiB |
10133
src/Advanced/Wallpaper/res/wolfram/p4.svg
Normal file
After Width: | Height: | Size: 268 KiB |
7894
src/Advanced/Wallpaper/res/wolfram/p4g.svg
Normal file
After Width: | Height: | Size: 204 KiB |
8247
src/Advanced/Wallpaper/res/wolfram/p4m.svg
Normal file
After Width: | Height: | Size: 229 KiB |
10580
src/Advanced/Wallpaper/res/wolfram/p6.svg
Normal file
After Width: | Height: | Size: 273 KiB |
13887
src/Advanced/Wallpaper/res/wolfram/p6m.svg
Normal file
After Width: | Height: | Size: 379 KiB |
6068
src/Advanced/Wallpaper/res/wolfram/pg.svg
Normal file
After Width: | Height: | Size: 176 KiB |
5703
src/Advanced/Wallpaper/res/wolfram/pgg.svg
Normal file
After Width: | Height: | Size: 147 KiB |
5985
src/Advanced/Wallpaper/res/wolfram/pm.svg
Normal file
After Width: | Height: | Size: 163 KiB |
6908
src/Advanced/Wallpaper/res/wolfram/pmg.svg
Normal file
After Width: | Height: | Size: 178 KiB |
8486
src/Advanced/Wallpaper/res/wolfram/pmm.svg
Normal file
After Width: | Height: | Size: 226 KiB |
BIN
src/Advanced/Wallpaper/res/xx-a.png
Normal file
After Width: | Height: | Size: 81 KiB |
BIN
src/Advanced/Wallpaper/res/xx-b.png
Normal file
After Width: | Height: | Size: 406 KiB |
@ -1,6 +1,7 @@
|
||||
[default]
|
||||
extend-words."LSAT" = "LSAT"
|
||||
extend-words."ket" = "ket"
|
||||
extend-words."typ" = "typ"
|
||||
|
||||
extend-ignore-re = [
|
||||
# spell:disable-line
|
||||
|