Mark 121780df6c
All checks were successful
CI / Typst formatting (push) Successful in 5s
CI / Typos (push) Successful in 11s
CI / Build (push) Successful in 5m39s
Wallpaper groups (#23)
Reviewed-on: #23
2025-05-08 18:40:59 -07:00

101 lines
2.8 KiB
Typst

#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
= The Signature-Cost Theorem
#definition()
First, we'll associate a _cost_ to each type of symmetry in orbifold notation:
#v(4mm)
#align(
center,
table(
stroke: (1pt, 1pt),
align: center,
columns: (auto, auto, auto, auto),
[*Symbol*], [*Cost*], [*Symbol*], [*Cost*],
[#sym.circle.small], [2], [#sym.times or #sym.convolve], [1],
[#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4],
[#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3],
[#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots],
[#sym.diamond.stroked.small`n`],
[$(n-1) / n$],
[#sym.convolve`n`],
[$(n-1) / (2n)$],
),
)
We then calculate the total "cost" of a signature by adding up the costs of each component.
For example, a pattern with signature #sym.convolve`333` has cost 2:
#v(2mm)
$
2 / 3 + 2 / 3 + 2 / 3 = 2
$
#problem()
Calculate the costs of the following signatures:
- #sym.diamond.stroked.small`3`#sym.convolve`3`
- #sym.convolve#sym.convolve
- #sym.diamond.stroked.small`4`#sym.convolve`2`:
#solution([
- #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$
- #sym.convolve#sym.convolve: $1 + 1 = 2$
- #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$
])
#v(1fr)
#theorem(name: "Signature Cost Theorem")
The signatures of planar wallpaper patterns are exactly those with total cost 2. \
#note([We will not prove this theorem today, accept it without proof.])
#problem()
Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \
Which preserve orientation? Which reverse orientation?
#solution([
- Reflections and glide reflections reverse orientation (directions of spirals).
- Translation and rotation preserve orientation.
])
#v(1fr)
#pagebreak()
#problem()
Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries.
#solution([
#sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small
])
#v(1fr)
#problem()
Find all the signatures consisting of only mirror symmetries.
#solution([
#sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve
])
#v(1fr)
#problem()
Find all the remaining signatures. \
Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \
#hint([They are all shown in the problems section.])
#solution([
#sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`,
#sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve,
#sym.times#sym.times, #sym.times#sym.convolve
])
#v(1fr)