#import "@local/handout:0.1.0": * #import "@preview/cetz:0.3.1" = The Signature-Cost Theorem #definition() First, we'll associate a _cost_ to each type of symmetry in orbifold notation: #v(4mm) #align( center, table( stroke: (1pt, 1pt), align: center, columns: (auto, auto, auto, auto), [*Symbol*], [*Cost*], [*Symbol*], [*Cost*], [#sym.circle.small], [2], [#sym.times or #sym.convolve], [1], [#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4], [#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3], [#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots], [#sym.diamond.stroked.small`n`], [$(n-1) / n$], [#sym.convolve`n`], [$(n-1) / (2n)$], ), ) We then calculate the total "cost" of a signature by adding up the costs of each component. For example, a pattern with signature #sym.convolve`333` has cost 2: #v(2mm) $ 2 / 3 + 2 / 3 + 2 / 3 = 2 $ #problem() Calculate the costs of the following signatures: - #sym.diamond.stroked.small`3`#sym.convolve`3` - #sym.convolve#sym.convolve - #sym.diamond.stroked.small`4`#sym.convolve`2`: #solution([ - #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$ - #sym.convolve#sym.convolve: $1 + 1 = 2$ - #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$ ]) #v(1fr) #theorem(name: "Signature Cost Theorem") The signatures of planar wallpaper patterns are exactly those with total cost 2. \ #note([We will not prove this theorem today, accept it without proof.]) #problem() Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \ Which preserve orientation? Which reverse orientation? #solution([ - Reflections and glide reflections reverse orientation (directions of spirals). - Translation and rotation preserve orientation. ]) #v(1fr) #pagebreak() #problem() Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries. #solution([ #sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small ]) #v(1fr) #problem() Find all the signatures consisting of only mirror symmetries. #solution([ #sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve ]) #v(1fr) #problem() Find all the remaining signatures. \ Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \ #hint([They are all shown in the problems section.]) #solution([ #sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`, #sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve, #sym.times#sym.times, #sym.times#sym.convolve ]) #v(1fr)