Added a problem
This commit is contained in:
parent
d39fb5e0be
commit
f8d66bdc22
@ -16,6 +16,10 @@
|
|||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
||||||
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
We say $x$ is \textit{odd} if $x = 2k + 1$ for some $k \in \mathbb{Z}$. \par
|
||||||
@ -53,6 +57,9 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$
|
||||||
|
|
||||||
@ -82,6 +89,22 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that there are infinitely may primes. \par
|
||||||
|
You may use the fact that every integer has a prime factorization.
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$.
|
For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$.
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user