Bugfixes
This commit is contained in:
parent
a536a31f2a
commit
ce68014eec
@ -8,7 +8,7 @@ Create a multiplication table for $\mathbb{Z}_4$:
|
|||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{c | c c c c}
|
\begin{tabular}{c | c c c c}
|
||||||
\times & 0 & 1 & 2 & 3 \\
|
$\times$ & 0 & 1 & 2 & 3 \\
|
||||||
\hline
|
\hline
|
||||||
0 & ? & ? & ? & ? \\
|
0 & ? & ? & ? & ? \\
|
||||||
1 & ? & ? & ? & ? \\
|
1 & ? & ? & ? & ? \\
|
||||||
|
@ -220,10 +220,10 @@
|
|||||||
Show that for any two functions $g: Y \to W$ and $h: Y \to W$, if
|
Show that for any two functions $g: Y \to W$ and $h: Y \to W$, if
|
||||||
$g \circ f = h \circ f \implies g = h$.
|
$g \circ f = h \circ f \implies g = h$.
|
||||||
|
|
||||||
\item[\star] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$,
|
\item[$\star$] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$,
|
||||||
$f \circ g = f \circ h \implies g = h$. Show that $f$ is injective.
|
$f \circ g = f \circ h \implies g = h$. Show that $f$ is injective.
|
||||||
|
|
||||||
\item[\star] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$,
|
\item[$\star$] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$,
|
||||||
$g \circ f = h \circ f \implies g = h$. Show f is surjective.
|
$g \circ f = h \circ f \implies g = h$. Show f is surjective.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user