Bugfixes
This commit is contained in:
		| @ -8,7 +8,7 @@ Create a multiplication table for $\mathbb{Z}_4$: | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tabular}{c | c c c c} | ||||
| 	\times & 0 & 1 & 2 & 3 \\ | ||||
| 	$\times$ & 0 & 1 & 2 & 3 \\ | ||||
| 	\hline | ||||
| 	0 & ? & ? & ? & ? \\ | ||||
| 	1 & ? & ? & ? & ? \\ | ||||
|  | ||||
| @ -220,10 +220,10 @@ | ||||
| 		Show that for any two functions $g: Y \to W$ and $h: Y \to W$, if | ||||
| 		$g \circ f = h \circ f \implies g = h$. | ||||
|  | ||||
| 		\item[\star] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$, | ||||
| 		\item[$\star$] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$, | ||||
| 		$f \circ g = f \circ h \implies g = h$. Show that $f$ is injective. | ||||
|  | ||||
| 		\item[\star] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$, | ||||
| 		\item[$\star$] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$, | ||||
| 		$g \circ f = h \circ f \implies g = h$. Show f is surjective. | ||||
| 	\end{itemize} | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user