Edits
This commit is contained in:
parent
55bbc39666
commit
9927c8ff43
@ -39,12 +39,12 @@
|
|||||||
|
|
||||||
\section{Bonus}
|
\section{Bonus}
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Is the set of all linear maps a vector space?
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
|
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Is the set of all linear maps a vector space?
|
||||||
|
\vfill
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -4,7 +4,7 @@
|
|||||||
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
A \textit{function} or \textit{map} $f$ from a set $A$ to a set $B$ is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
|
||||||
|
|
||||||
|
|
||||||
\definition{This one is worth remembering}
|
\definition{}
|
||||||
Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\
|
Let $V$ and $U$ be vector spaces, and let $f: V \to U$ be a map from $V$ to $U$. \\
|
||||||
We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$:
|
We say $f$ is \textit{linear} if it satisfies the following for any $v \in V$, $u \in U$, $a \in \mathbb{R}$:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
@ -16,7 +16,7 @@ Draw a $3 \times 2$ matrix.
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\definition{Matrices as Transformations}
|
\definition{}
|
||||||
We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$:
|
We can define the \say{product\footnotemark{}} of a matrix $A$ and a vector $v$:
|
||||||
\footnotetext{This is an uncommon word to use in this context. You will soon see why.}
|
\footnotetext{This is an uncommon word to use in this context. You will soon see why.}
|
||||||
$$
|
$$
|
||||||
@ -57,7 +57,7 @@ $$
|
|||||||
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Compute the following \say{product}:
|
Compute the following:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
@ -186,13 +186,27 @@ Before you start, answer the following questions:
|
|||||||
\problem{}<proofback>
|
\problem{}<proofback>
|
||||||
Show that any linear transformation can be written as a matrix.
|
Show that any linear transformation can be written as a matrix.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $\mathbb{P}^n$, the set of polynomials of degree $n$, is a vector space.
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}p$. \\
|
||||||
|
Find a matrix that corresponds to $D$. \\
|
||||||
|
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How solutions?}
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\
|
Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\
|
||||||
Repeat \ref{prooffwd} and \ref{proofback} using only axioms.
|
Repeat \ref{prooffwd} and \ref{proofback} using only axioms, without assuming that we're working in $\mathbb{R}^n$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user