Minor edits
This commit is contained in:
parent
5ddd354b4a
commit
887b6de1d6
@ -149,13 +149,18 @@ The first \say{pure} functions we'll define are $I$ and $M$:
|
||||
\end{itemize}
|
||||
|
||||
Note that $I$ and $M$ don't have a meaning on their own. They are not formal functions. \par
|
||||
Rather, it's notation that says \say{write $\lm x.x$ whenever you see $I$.}
|
||||
Rather, they are abbreviations that say \say{write $\lm x.x$ whenever you see $I$.}
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Reduce the following expressions.
|
||||
Reduce the following expressions. \par
|
||||
\hint{
|
||||
Of course, your final result will be a function. \\
|
||||
Functions are the only objects we have!
|
||||
}
|
||||
|
||||
\begin{itemize}[itemsep=2mm]
|
||||
\item $I~I$
|
||||
\item $(I~I)~I$
|
||||
@ -167,7 +172,7 @@ Reduce the following expressions.
|
||||
\vfill
|
||||
|
||||
In lambda calculus, functions are left-associative: \par
|
||||
$(f~g~h)$ is equivalent to $((f~g)~h)$, not $(f~(g~h))$
|
||||
$(f~g~h)$ means $((f~g)~h)$, not $(f~(g~h))$
|
||||
|
||||
As usual, we use parentheses to group terms if we want to override this order: $(f~(g~h)) \neq ((f~g)~h)$ \par
|
||||
In this handout, all types of parentheses ( $(), [~],$ etc ) are equivalent.
|
||||
@ -254,6 +259,7 @@ Evaluate $(C~a~b~x)$ for arbitary expressions $a$ and $b$. \par
|
||||
\problem{}
|
||||
Using the definition of $C$ above, evaluate $C~M~I~\star$ \par
|
||||
Then, evaluate $C~I~M~I$ \par
|
||||
\note[Note]{$\star$ represents an arbitrary expression. Treat it like an unknown variable.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user