Minor edits
This commit is contained in:
		| @ -149,13 +149,18 @@ The first \say{pure} functions we'll define are $I$ and $M$: | ||||
| \end{itemize} | ||||
|  | ||||
| Note that $I$ and $M$ don't have a meaning on their own. They are not formal functions. \par | ||||
| Rather, it's notation that says \say{write $\lm x.x$ whenever you see $I$.} | ||||
| Rather, they are abbreviations that say \say{write $\lm x.x$ whenever you see $I$.} | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Reduce the following expressions. | ||||
| Reduce the following expressions. \par | ||||
| \hint{ | ||||
| 	Of course, your final result will be a function. \\ | ||||
| 	Functions are the only objects we have! | ||||
| } | ||||
|  | ||||
| \begin{itemize}[itemsep=2mm] | ||||
| 	\item $I~I$ | ||||
| 	\item $(I~I)~I$ | ||||
| @ -167,7 +172,7 @@ Reduce the following expressions. | ||||
| \vfill | ||||
|  | ||||
| In lambda calculus, functions are left-associative: \par | ||||
| $(f~g~h)$ is equivalent to $((f~g)~h)$, not $(f~(g~h))$ | ||||
| $(f~g~h)$ means $((f~g)~h)$, not $(f~(g~h))$ | ||||
|  | ||||
| As usual, we use parentheses to group terms if we want to override this order: $(f~(g~h)) \neq ((f~g)~h)$ \par | ||||
| In this handout, all types of parentheses ( $(), [~],$ etc ) are equivalent. | ||||
| @ -254,6 +259,7 @@ Evaluate $(C~a~b~x)$ for arbitary expressions $a$ and $b$. \par | ||||
| \problem{} | ||||
| Using the definition of $C$ above, evaluate $C~M~I~\star$ \par | ||||
| Then, evaluate $C~I~M~I$ \par | ||||
| \note[Note]{$\star$ represents an arbitrary expression. Treat it like an unknown variable.} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user