Minor edits
This commit is contained in:
parent
2dafcb026c
commit
2025b89618
@ -89,7 +89,7 @@ Some product states can be factored into a tensor product of individual qubit st
|
|||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr)
|
\frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr)
|
||||||
= \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes
|
= \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes
|
||||||
\frac{1}{\sqrt{2}}\bigl( \ket{0} - \ket{1} \bigr)
|
\frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr)
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states.
|
Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states.
|
||||||
|
|
||||||
|
@ -76,6 +76,7 @@ The \texttt{and} gate is a map $\mathbb{B}^2 \to \mathbb{B}$ defined by the foll
|
|||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par
|
Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par
|
||||||
|
\hint{Remember, we write bits as vectors.}
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
|
@ -23,12 +23,6 @@ This implies the following: \par
|
|||||||
(You will prove all these properties in any introductory linear algebra course. \\
|
(You will prove all these properties in any introductory linear algebra course. \\
|
||||||
This isn't a lesson on linear algebra, so you may take them as given today.)
|
This isn't a lesson on linear algebra, so you may take them as given today.)
|
||||||
|
|
||||||
\definition{}
|
|
||||||
Let $\mathbb{U} \subset \mathbb{R}^2$ be the set of points in the unit circle. \par
|
|
||||||
We can restate the above definition as follows: \par
|
|
||||||
A quantum gate is an invertible map from $\mathbb{U}^n$ to $\mathbb{U}^n$.
|
|
||||||
|
|
||||||
|
|
||||||
\generic{Remark:}
|
\generic{Remark:}
|
||||||
Let $G$ be a quantum gate. \par
|
Let $G$ be a quantum gate. \par
|
||||||
Since quantum gates are, by definition, \textit{linear} maps,
|
Since quantum gates are, by definition, \textit{linear} maps,
|
||||||
@ -219,16 +213,5 @@ Using this result, find $H^{-1}$.
|
|||||||
What geometric transformation does $H$ apply to the unit circle? \par
|
What geometric transformation does $H$ apply to the unit circle? \par
|
||||||
\hint{Rotation or reflection? How much, or about which axis?}
|
\hint{Rotation or reflection? How much, or about which axis?}
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
What are $H\ket{0}$ and $H\ket{1}$? \par
|
|
||||||
Are these states entangled?
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
$H\ket{0} = \frac{1}{\sqrt{2}}\bigl(\ket{0} + \ket{1}\bigr)$ and $H\ket{1} = \frac{1}{\sqrt{2}}\bigl(\ket{0} - \ket{1}\bigr)$ \par
|
|
||||||
Both of these are entangled states.
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
Loading…
x
Reference in New Issue
Block a user