Minor edits
This commit is contained in:
		| @ -89,7 +89,7 @@ Some product states can be factored into a tensor product of individual qubit st | ||||
| \begin{equation*} | ||||
| 	\frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr) | ||||
| 	= \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes | ||||
| 		\frac{1}{\sqrt{2}}\bigl( \ket{0} - \ket{1} \bigr) | ||||
| 		\frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) | ||||
| \end{equation*} | ||||
| Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states. | ||||
|  | ||||
|  | ||||
| @ -76,6 +76,7 @@ The \texttt{and} gate is a map $\mathbb{B}^2 \to \mathbb{B}$ defined by the foll | ||||
| \end{center} | ||||
|  | ||||
| Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par | ||||
| \hint{Remember, we write bits as vectors.} | ||||
|  | ||||
|  | ||||
| \begin{solution} | ||||
|  | ||||
| @ -23,12 +23,6 @@ This implies the following: \par | ||||
| (You will prove all these properties in any introductory linear algebra course. \\ | ||||
| This isn't a lesson on linear algebra, so you may take them as given today.) | ||||
|  | ||||
| \definition{} | ||||
| Let $\mathbb{U} \subset \mathbb{R}^2$ be the set of points in the unit circle. \par | ||||
| We can restate the above definition as follows: \par | ||||
| A quantum gate is an invertible map from $\mathbb{U}^n$ to $\mathbb{U}^n$. | ||||
|  | ||||
|  | ||||
| \generic{Remark:} | ||||
| Let $G$ be a quantum gate. \par | ||||
| Since quantum gates are, by definition, \textit{linear} maps, | ||||
| @ -219,16 +213,5 @@ Using this result, find $H^{-1}$. | ||||
| What geometric transformation does $H$ apply to the unit circle? \par | ||||
| \hint{Rotation or reflection? How much, or about which axis?} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| What are $H\ket{0}$ and $H\ket{1}$? \par | ||||
| Are these states entangled? | ||||
|  | ||||
| \begin{solution} | ||||
| 	$H\ket{0} = \frac{1}{\sqrt{2}}\bigl(\ket{0} + \ket{1}\bigr)$ and $H\ket{1} = \frac{1}{\sqrt{2}}\bigl(\ket{0} - \ket{1}\bigr)$ \par | ||||
| 	Both of these are entangled states. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
		Reference in New Issue
	
	Block a user