2023-03-07 22:00:47 -08:00
|
|
|
\section{To Mock a Mockingbird}
|
|
|
|
|
|
|
|
\problem{}
|
2023-03-16 19:36:13 -07:00
|
|
|
Mark tells you that any bird $A$ is fond of at least one other bird. \\
|
2023-03-07 22:00:47 -08:00
|
|
|
Complete his proof.
|
|
|
|
\begin{alltt}
|
|
|
|
let A \cmnt{Let A be any any bird.}
|
2023-03-16 19:36:13 -07:00
|
|
|
let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
2023-03-07 22:00:47 -08:00
|
|
|
|
|
|
|
\cmnt{The rest is up to you.}
|
|
|
|
CC = ??
|
|
|
|
\end{alltt}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{helpbox}
|
|
|
|
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
|
|
|
\texttt{Def:} $A$ is fond of $B$ if $AB = B$
|
|
|
|
\end{helpbox}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} let A \cmnt{Let A be any any bird.}
|
|
|
|
\lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
|
|
|
\lineno{} CC = A(MC)
|
|
|
|
\lineno{} = A(CC) \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
2023-03-30 20:55:05 -07:00
|
|
|
We say a bird $A$ is \textit{egocentric} if it is fond of itself. \\
|
2023-03-07 22:00:47 -08:00
|
|
|
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|
|
|
|
|
|
|
|
|
|
|
\begin{helpbox}
|
|
|
|
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
|
|
|
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
|
|
|
\texttt{Lem:} Any bird is fond of at least one bird.
|
|
|
|
\end{helpbox}
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} \cmnt{We know M is fond of at least one bird.}
|
|
|
|
\lineno{} let E so that ME = E
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} ME = E \cmnt{By definition of fondness}
|
|
|
|
\lineno{} ME = EE \cmnt{By definition of M}
|
|
|
|
\lineno{} \thus{} EE = E \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
|
2023-03-28 22:16:39 -07:00
|
|
|
\definition{}
|
2023-03-07 22:00:47 -08:00
|
|
|
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
2023-03-30 20:55:05 -07:00
|
|
|
In other words, $A$ is agreeable if given any $B$, we can find a bird $x$ satisfying $Ax = Bx$.
|
2023-03-07 22:00:47 -08:00
|
|
|
|
2023-03-28 22:16:39 -07:00
|
|
|
\problem{}
|
|
|
|
Is the Mockingbird agreeable?
|
2023-03-07 22:00:47 -08:00
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
We know that $Mx = xx$. \\
|
|
|
|
|
|
|
|
From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
2023-03-30 20:55:05 -07:00
|
|
|
Show that if $C$ is agreeable, $A$ is agreeable.
|
2023-03-07 22:00:47 -08:00
|
|
|
\begin{alltt}
|
|
|
|
\cmnt{Given information}
|
|
|
|
let A, B
|
2023-03-16 19:36:13 -07:00
|
|
|
let Cx = A(Bx)
|
2023-03-07 22:00:47 -08:00
|
|
|
|
|
|
|
let D \cmnt{Arbitrary bird}
|
2023-03-16 19:36:13 -07:00
|
|
|
let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
2023-03-07 22:00:47 -08:00
|
|
|
Cy = ??
|
|
|
|
\end{alltt}
|
|
|
|
|
|
|
|
\begin{helpbox}[0.65]
|
|
|
|
\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
|
|
|
|
\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
|
|
|
|
\end{helpbox}
|
|
|
|
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} \cmnt{Given information}
|
|
|
|
\lineno{} let A, B
|
|
|
|
\lineno{} let Cx = A(Bx)
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} let D \cmnt{Arbitrary bird}
|
|
|
|
\lineno{} let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
|
|
|
\lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} A(By) = Ey
|
|
|
|
\lineno{} = D(By) \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|
|
|
|
|
|
|
|
\problem{}
|
2023-03-16 19:36:13 -07:00
|
|
|
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$
|
2023-03-07 22:00:47 -08:00
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} let A, B, C
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} \cmnt{Invoke the Law of Composition:}
|
2023-03-28 22:16:39 -07:00
|
|
|
\lineno{} let Qx = B(Cx)
|
|
|
|
\lineno{} let Dx = A(Qx)
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{}
|
2023-03-28 22:16:39 -07:00
|
|
|
\lineno{} Dx = A(Qx)
|
|
|
|
\lineno{} = A(B(Cx)) \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
|
2023-03-30 20:55:05 -07:00
|
|
|
\definition{}
|
2023-03-07 22:00:47 -08:00
|
|
|
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
|
|
|
Note that $x$ and $y$ may be the same bird. \\
|
2023-03-30 20:55:05 -07:00
|
|
|
|
|
|
|
\problem{}
|
2023-03-07 22:00:47 -08:00
|
|
|
Show that any two birds in this forest are compatible. \\
|
|
|
|
\begin{alltt}
|
|
|
|
let A, B
|
2023-03-16 19:36:13 -07:00
|
|
|
let Cx = A(Bx)
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
|
|
|
|
\begin{helpbox}
|
|
|
|
\texttt{Law:} Law of composition \\
|
|
|
|
\texttt{Lem:} Any bird is fond of at least one bird.
|
|
|
|
\end{helpbox}
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} let A, B
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} let Cx = A(Bx) \cmnt{Composition}
|
|
|
|
\lineno{} let y = Cy \cmnt{Let C be fond of y}
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} Cy = y
|
|
|
|
\lineno{} = A(By)
|
|
|
|
\lineno{}
|
|
|
|
\lineno{} let x = By \cmnt{Rename By to x}
|
|
|
|
\lineno{} Ax = y \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
|
|
|
|
\problem{}
|
|
|
|
Show that any bird that is fond of at least one bird is compatible with itself.
|
|
|
|
|
|
|
|
\begin{solution}
|
|
|
|
\begin{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
\lineno{} let A
|
|
|
|
\lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
|
|
|
|
\lineno{} Ax = x \qed{}
|
2023-03-07 22:00:47 -08:00
|
|
|
\end{alltt}
|
2023-03-16 19:36:13 -07:00
|
|
|
|
2023-03-07 22:00:47 -08:00
|
|
|
That's it.
|
|
|
|
\end{solution}
|
|
|
|
|
|
|
|
\vfill
|
|
|
|
\pagebreak
|