Finished TMAM hanout
This commit is contained in:
		| @ -7,6 +7,9 @@ | ||||
|  | ||||
| \usepackage{mathtools} % for \coloneqq | ||||
|  | ||||
| %\usepackage{lua-visual-debug} | ||||
|  | ||||
| \usepackage{censor} | ||||
| \usepackage{alltt} | ||||
|  | ||||
|  | ||||
| @ -37,10 +40,24 @@ | ||||
| } | ||||
|  | ||||
| % Logic block comment | ||||
| \newcommand{\cmnt}[1]{ | ||||
| 	\textcolor{gray}{\# #1} | ||||
| \newcommand{\cmnt}[1]{\textcolor{gray}{\# #1}} | ||||
|  | ||||
| \newcounter{allttLineCounter} | ||||
| \setcounter{allttLineCounter}{0} | ||||
|  | ||||
| \newcommand{\linenoref}[1]{\colorbox{gray!30!white}{#1}} | ||||
| \newcommand{\lineno}{ | ||||
| 	\stepcounter{allttLineCounter}% | ||||
| 	\linenoref{\ifnum\value{allttLineCounter}<10 0\fi\arabic{allttLineCounter}}% | ||||
| } | ||||
|  | ||||
| % Redefine alltt so it automatically | ||||
| % resets allttLineCounter | ||||
| \let\oldalltt\alltt | ||||
| \renewenvironment{alltt} | ||||
| 	{\setcounter{allttLineCounter}{0}\begin{oldalltt}} | ||||
| 	{\end{oldalltt}} | ||||
|  | ||||
|  | ||||
| \newcommand{\thus}{\(\Rightarrow\)} | ||||
| \newcommand{\qed}{\(\blacksquare\)} | ||||
| @ -59,5 +76,5 @@ | ||||
|  | ||||
| 	\input{parts/00 intro} | ||||
| 	\input{parts/01 tmam} | ||||
|  | ||||
| 	\input{parts/02 kestrel} | ||||
| \end{document} | ||||
| @ -38,7 +38,9 @@ We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$, | ||||
| $$ | ||||
| 	Cx = A(Bx) | ||||
| $$ | ||||
| In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. | ||||
| In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. \\ | ||||
| Note that $C$ is exactly the kind of bird $L_1$ guarantees. | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
| @ -1,11 +1,11 @@ | ||||
| \section{To Mock a Mockingbird} | ||||
|  | ||||
| \problem{} | ||||
| The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\ | ||||
| Mark tells you that any bird $A$ is fond of at least one other bird. \\ | ||||
| Complete his proof. | ||||
| \begin{alltt} | ||||
| 	let A           \cmnt{Let A be any any bird.} | ||||
| 	let Cx := A(Mx) \cmnt{Define C as the composition of A and M} | ||||
| 	let Cx = A(Mx)  \cmnt{Define C as the composition of A and M} | ||||
|  | ||||
| 	\cmnt{The rest is up to you.} | ||||
| 	CC = ?? | ||||
| @ -20,17 +20,16 @@ Complete his proof. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		let A           \cmnt{Let A be any any bird.} | ||||
| 		let Cx := A(Mx) \cmnt{Define C as the composition of A and M} | ||||
| 		CC = A(MC) | ||||
| 		   = A(CC)  \qed{} | ||||
| 		\lineno{} let A           \cmnt{Let A be any any bird.} | ||||
| 		\lineno{} let Cx = A(Mx)  \cmnt{Define C as the composition of A and M} | ||||
| 		\lineno{} CC = A(MC) | ||||
| 		\lineno{}    = A(CC)  \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \problem{} | ||||
| We say a bird $A$ is \textit{egocentric} if it is fond if itself. | ||||
|  | ||||
| We say a bird $A$ is \textit{egocentric} if it is fond if itself. \\ | ||||
| Show that the laws of the forest guarantee that at least one bird is egocentric. | ||||
|  | ||||
|  | ||||
| @ -42,12 +41,12 @@ Show that the laws of the forest guarantee that at least one bird is egocentric. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		\cmnt{We know M is fond of at least one bird.} | ||||
| 		let E so that ME = E | ||||
|  | ||||
| 		ME = E     \cmnt{By definition of fondness} | ||||
| 		ME = EE    \cmnt{By definition of M} | ||||
| 		\thus{} EE = E  \qed{} | ||||
| 		\lineno{} \cmnt{We know M is fond of at least one bird.} | ||||
| 		\lineno{} let E so that ME = E | ||||
| 		\lineno{} | ||||
| 		\lineno{} ME = E     \cmnt{By definition of fondness} | ||||
| 		\lineno{} ME = EE    \cmnt{By definition of M} | ||||
| 		\lineno{} \thus{} EE = E  \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| @ -57,7 +56,7 @@ Show that the laws of the forest guarantee that at least one bird is egocentric. | ||||
|  | ||||
| \problem{} | ||||
| We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\ | ||||
| This means that $Ax = Bx$. | ||||
| In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$. | ||||
|  | ||||
| \begin{helpbox} | ||||
| 	\texttt{Def:} $Mx := xx$ | ||||
| @ -73,15 +72,14 @@ This means that $Ax = Bx$. | ||||
|  | ||||
| \problem{} | ||||
| Take two birds $A$ and $B$. Let $C$ be their composition. \\ | ||||
| Show that $A$ must be agreeable if $C$ is agreeable. \\ | ||||
| The bear has again given you a hint. | ||||
| Show that $A$ must be agreeable if $C$ is agreeable. | ||||
| \begin{alltt} | ||||
| 	\cmnt{Given information} | ||||
| 	let A, B | ||||
| 	let Cx := A(Bx) | ||||
| 	let Cx = A(Bx) | ||||
|  | ||||
| 	let D            \cmnt{Arbitrary bird} | ||||
| 	let Ex := D(Bx)  \cmnt{Define E as the composition of D and B} | ||||
| 	let Ex = D(Bx)   \cmnt{Define E as the composition of D and B} | ||||
| 	Cy = ?? | ||||
| \end{alltt} | ||||
|  | ||||
| @ -93,15 +91,16 @@ The bear has again given you a hint. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		\cmnt{Given information} | ||||
| 		let A, B | ||||
| 		let Cx := A(Bx) | ||||
|  | ||||
| 		let D           \cmnt{Arbitrary bird} | ||||
| 		let Ex := D(Bx) \cmnt{Define E as the composition of D and B} | ||||
| 		Cy = Ey         \cmnt{For some y, because C is agreeable} | ||||
| 		\thus{} A(By) = Ey | ||||
| 		\thus{} A(By) = D(By)  \qed{} | ||||
| 		\lineno{} \cmnt{Given information} | ||||
| 		\lineno{} let A, B | ||||
| 		\lineno{} let Cx = A(Bx) | ||||
| 		\lineno{} | ||||
| 		\lineno{} let D                  \cmnt{Arbitrary bird} | ||||
| 		\lineno{} let Ex = D(Bx)         \cmnt{Define E as the composition of D and B} | ||||
| 		\lineno{} let y so that Cy = Ey  \cmnt{Such a y must exist because C is agreeable} | ||||
| 		\lineno{} | ||||
| 		\lineno{} A(By) = Ey | ||||
| 		\lineno{}       = D(By)  \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| @ -109,18 +108,18 @@ The bear has again given you a hint. | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$ | ||||
| Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$ | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		let A, B, C | ||||
|  | ||||
| 		\cmnt{Invoke the Law of Composition:} | ||||
| 		let Q := BC | ||||
| 		let D := AQ | ||||
|  | ||||
| 		D = AQ | ||||
| 		  = A(BC)  \qed{} | ||||
| 		\lineno{} let A, B, C | ||||
| 		\lineno{} | ||||
| 		\lineno{} \cmnt{Invoke the Law of Composition:} | ||||
| 		\lineno{} let Q = BC | ||||
| 		\lineno{} let D = AQ | ||||
| 		\lineno{} | ||||
| 		\lineno{} D = AQ | ||||
| 		\lineno{}   = A(BC)  \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| @ -133,7 +132,7 @@ Note that $x$ and $y$ may be the same bird. \\ | ||||
| Show that any two birds in this forest are compatible. \\ | ||||
| \begin{alltt} | ||||
| 	let A, B | ||||
| 	let Cx := A(Bx) | ||||
| 	let Cx = A(Bx) | ||||
| \end{alltt} | ||||
|  | ||||
| \begin{helpbox} | ||||
| @ -143,16 +142,16 @@ Show that any two birds in this forest are compatible. \\ | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		let A, B | ||||
|  | ||||
| 		let Cx := A(Bx)  \cmnt{Composition} | ||||
| 		let y := Cy      \cmnt{Let C be fond of y} | ||||
|  | ||||
| 		Cy = y | ||||
| 		\thus{} A(By) = y | ||||
|  | ||||
| 		let x := By  \cmnt{Rename By to x} | ||||
| 		Ax = y  \qed{} | ||||
| 		\lineno{} let A, B | ||||
| 		\lineno{} | ||||
| 		\lineno{} let Cx = A(Bx)  \cmnt{Composition} | ||||
| 		\lineno{} let y = Cy      \cmnt{Let C be fond of y} | ||||
| 		\lineno{} | ||||
| 		\lineno{} Cy = y | ||||
| 		\lineno{}    = A(By) | ||||
| 		\lineno{} | ||||
| 		\lineno{} let x = By  \cmnt{Rename By to x} | ||||
| 		\lineno{} Ax = y  \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| @ -163,13 +162,13 @@ Show that any bird that is fond of at least one bird is compatible with itself. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		let A | ||||
| 		let x so that Ax = x | ||||
| 		Ax = x  \qed{} | ||||
| 		\lineno{} let A | ||||
| 		\lineno{} let x so that Ax = x  \cmnt{A is fond of at least one other bird} | ||||
| 		\lineno{} Ax = x  \qed{} | ||||
| 	\end{alltt} | ||||
|  | ||||
| 	That's it. | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										137
									
								
								Advanced/Mock a Mockingbird/parts/02 kestrel.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										137
									
								
								Advanced/Mock a Mockingbird/parts/02 kestrel.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,137 @@ | ||||
| \section{The Curious Kestrel} | ||||
|  | ||||
| \definition{} | ||||
| Recall that a bird is \textit{egocenteric} if it is fond of itself. \\ | ||||
| A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$. | ||||
|  | ||||
| \definition{} | ||||
| More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\ | ||||
| Convince yourself that a hopelessly egocentric bird is fixated on itself. | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Say $A$ is fixated on $B$. Is $A$ fond of $B$? | ||||
|  | ||||
| \begin{solution} | ||||
| 	Yes! See the following proof. | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} let B | ||||
| 		\lineno{} let B | ||||
| 		\lineno{} let A so that Ax = B | ||||
| 		\lineno{} \thus{} AB = B \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| The \textit{Kestrel} $K$ is defined by the following relationship: | ||||
| $$ | ||||
| 	(Kx)y = x | ||||
| $$ | ||||
| In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$. | ||||
|  | ||||
| \problem{} | ||||
| Show that an egocenteric Kestrel is hopelessly egocentric | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} KK = K | ||||
| 		\lineno{} \thus{} (KK)y = K | ||||
| 		\lineno{} \thus{} Ky = K \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Assume the forest contains a Kestrel. \\ | ||||
| Given $L_1$ and $L_2$, show that at least one bird is hopelessly egocentric. | ||||
|  | ||||
| \begin{helpbox}[0.75] | ||||
| 	\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\ | ||||
| 	\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\ | ||||
| 	\texttt{???:} You'll need one more result from the previous section. Good luck! | ||||
| \end{helpbox} | ||||
|  | ||||
| \begin{solution} | ||||
| 	The final piece is a lemma we proved earler: \\ | ||||
| 	Any bird is fond of at least one bird | ||||
|  | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} let A so that KA = A   \cmnt{Any bird is fond of at least one bird} | ||||
| 		\lineno{} (KA)y = y              \cmnt{By definition of the kestrel} | ||||
| 		\lineno{} \thus{} Ay = A \qed{}  \cmnt{By 01} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{Kestrel Left-Cancellation}<leftcancel> | ||||
| In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\ | ||||
| Show that $Kx = Ky \implies x = y$. | ||||
|  | ||||
| \begin{alltt} | ||||
| 	\cmnt{This is a hint.} | ||||
| 	let x, y so that Kx = Ky | ||||
| \end{alltt} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} let x, y so that Kx = Ky | ||||
| 		\lineno{} let z | ||||
| 		\lineno{} | ||||
| 		\lineno{} (Kx)z = (Ky)z  \cmnt{By 01} | ||||
| 		\lineno{} | ||||
| 		\lineno{} \cmnt{By the definition of K} | ||||
| 		\lineno{} (Kx)z = x | ||||
| 		\lineno{} (Ky)z = y | ||||
| 		\lineno{} | ||||
| 		\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Show that if $K$ is fond of $Kx$, $K$ is fond of $x$. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} let x so that K(Kx) = Kx | ||||
| 		\lineno{} (K(Kx))y = (Kx)y | ||||
| 		\lineno{}          = Kx  \cmnt{By definition of K} | ||||
| 		\lineno{} x = Kx  \cmnt{By 03 and definition of K} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| An egocentric Kestrel must be extremely lonely. Why is this? | ||||
|  | ||||
| \begin{solution} | ||||
| 	If a Kestrel is egocenteric, it must be the only bird in the forest: | ||||
|  | ||||
| 	\begin{alltt} | ||||
| 		\lineno{} \cmnt{Given} | ||||
| 		\lineno{} Kx = K for some x | ||||
| 		\lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric} | ||||
| 		\lineno{} Kx = K for all x | ||||
| 		\lineno{} | ||||
| 		\lineno{} let x, y | ||||
| 		\lineno{} Kx = K | ||||
| 		\lineno{} Ky = K | ||||
| 		\lineno{} Kx = Ky | ||||
| 		\lineno{} x = y for all x, y  \cmnt{By \ref{leftcancel}} | ||||
| 		\lineno{} x = y = K \qed{}  \cmnt{By 10, and since K exists} | ||||
| 	\end{alltt} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
		Reference in New Issue
	
	Block a user