Cleanup
This commit is contained in:
		@@ -57,225 +57,7 @@
 | 
			
		||||
			Based on a book of the same name.
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
	\section{Introduction}
 | 
			
		||||
 | 
			
		||||
	A certain enchanted forest is inhabited by talking birds. Each of these birds has a name, and will respond whenever it hears the name of another. Suppose you are exploring this forest and come across the bird $A$. You call the name of bird $B$. $A$ hears you and responds with the name of some other bird, which we will designate $AB$.
 | 
			
		||||
 | 
			
		||||
	Bird $AB$ is, by definition, $A$'s response to $B$.
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	As you wander around this forest, you quickly discover two interesting facts:
 | 
			
		||||
	\begin{enumerate}[itemsep = 1mm]
 | 
			
		||||
		\item $A$'s responds to $B$ mustn't be the same as $B$'s response to $A$.
 | 
			
		||||
		\item Given three birds $A$, $B$, and $C$, $(AB)C$ and $A(BC)$ are not necessarily the same bird. \\
 | 
			
		||||
		Bird $A(BC)$ is $A$'s response to bird $BC$, while $(AB)C$ is $AB$'s response to $C$. \\
 | 
			
		||||
		Thus, $ABC$ is ambiguous. Parenthesis are mandatory.
 | 
			
		||||
	\end{enumerate}
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	You also find that this forest has two laws:
 | 
			
		||||
	\begin{enumerate}[itemsep = 1mm]
 | 
			
		||||
		\item $L_1$, \textit{The Law of Composition}: \\
 | 
			
		||||
		For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
 | 
			
		||||
		\item $L_2$, \textit{The Law of the Mockingbird}: \\
 | 
			
		||||
		The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
 | 
			
		||||
		In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
 | 
			
		||||
	\end{enumerate}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\definition{}
 | 
			
		||||
	We say a bird $A$ is fond of a bird $B$ if $A$ responds to $B$ with $B$. \\
 | 
			
		||||
	In other words, $A$ is fond of $B$ if $AB = B$.
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\definition{}
 | 
			
		||||
	We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
 | 
			
		||||
	$$
 | 
			
		||||
		Cx = A(Bx)
 | 
			
		||||
	$$
 | 
			
		||||
	In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$.
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
 | 
			
		||||
	\section{To Mock a Mockingbird}
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\
 | 
			
		||||
	Complete his proof.
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A           \cmnt{Let A be any any bird.}
 | 
			
		||||
		let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
 | 
			
		||||
 | 
			
		||||
		\cmnt{The rest is up to you.}
 | 
			
		||||
		CC = ??
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\begin{helpbox}
 | 
			
		||||
		\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
 | 
			
		||||
		\texttt{Def:} $A$ is fond of $B$ if $AB = B$
 | 
			
		||||
	\end{helpbox}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			let A           \cmnt{Let A be any any bird.}
 | 
			
		||||
			let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
 | 
			
		||||
			CC = A(MC)
 | 
			
		||||
			   = A(CC)  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\problem{}
 | 
			
		||||
	We say a bird $A$ is \textit{egocentric} if it is fond if itself.
 | 
			
		||||
 | 
			
		||||
	Show that the laws of the forest guarantee that at least one bird is egocentric.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\begin{helpbox}
 | 
			
		||||
		\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
 | 
			
		||||
		\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
 | 
			
		||||
		\texttt{Lem:} Any bird is fond of at least one bird.
 | 
			
		||||
	\end{helpbox}
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			\cmnt{We know M is fond of at least one bird.}
 | 
			
		||||
			let E so that ME = E
 | 
			
		||||
 | 
			
		||||
			ME = E     \cmnt{By definition of fondness}
 | 
			
		||||
			ME = EE    \cmnt{By definition of M}
 | 
			
		||||
			\thus{} EE = E  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
 | 
			
		||||
	This means that $Ax = Bx$.
 | 
			
		||||
 | 
			
		||||
	\begin{helpbox}
 | 
			
		||||
		\texttt{Def:} $Mx := xx$
 | 
			
		||||
	\end{helpbox}
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		We know that $Mx = xx$. \\
 | 
			
		||||
 | 
			
		||||
		From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Take two birds $A$ and $B$. Let $C$ be their composition. \\
 | 
			
		||||
	Show that $A$ must be agreeable if $C$ is agreeable. \\
 | 
			
		||||
	The bear has again given you a hint.
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		\cmnt{Given information}
 | 
			
		||||
		let A, B
 | 
			
		||||
		let Cx := A(Bx)
 | 
			
		||||
 | 
			
		||||
		let D            \cmnt{Arbitrary bird}
 | 
			
		||||
		let Ex := D(Bx)  \cmnt{Define E as the composition of D and B}
 | 
			
		||||
		Cy = ??
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
 | 
			
		||||
	\begin{helpbox}[0.65]
 | 
			
		||||
		\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
 | 
			
		||||
		\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
 | 
			
		||||
	\end{helpbox}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			\cmnt{Given information}
 | 
			
		||||
			let A, B
 | 
			
		||||
			let Cx := A(Bx)
 | 
			
		||||
 | 
			
		||||
			let D           \cmnt{Arbitrary bird}
 | 
			
		||||
			let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
 | 
			
		||||
			Cy = Ey         \cmnt{For some y, because C is agreeable}
 | 
			
		||||
			\thus{} A(By) = Ey
 | 
			
		||||
			\thus{} A(By) = D(By)  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			let A, B, C
 | 
			
		||||
 | 
			
		||||
			\cmnt{Invoke the Law of Composition:}
 | 
			
		||||
			let Q := BC
 | 
			
		||||
			let D := AQ
 | 
			
		||||
 | 
			
		||||
			D = AQ
 | 
			
		||||
			  = A(BC)  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
 | 
			
		||||
	Note that $x$ and $y$ may be the same bird. \\
 | 
			
		||||
	Show that any two birds in this forest are compatible. \\
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A, B
 | 
			
		||||
		let Cx := A(Bx)
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
 | 
			
		||||
	\begin{helpbox}
 | 
			
		||||
		\texttt{Law:} Law of composition \\
 | 
			
		||||
		\texttt{Lem:} Any bird is fond of at least one bird.
 | 
			
		||||
	\end{helpbox}
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			let A, B
 | 
			
		||||
 | 
			
		||||
			let Cx := A(Bx)  \cmnt{Composition}
 | 
			
		||||
			let y := Cy      \cmnt{Let C be fond of y}
 | 
			
		||||
 | 
			
		||||
			Cy = y
 | 
			
		||||
			\thus{} A(By) = y
 | 
			
		||||
 | 
			
		||||
			let x := By  \cmnt{Rename By to x}
 | 
			
		||||
			Ax = y  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
 | 
			
		||||
	\problem{}
 | 
			
		||||
	Show that any bird that is fond of at least one bird is compatible with itself.
 | 
			
		||||
 | 
			
		||||
	\begin{solution}
 | 
			
		||||
		\begin{alltt}
 | 
			
		||||
			let A
 | 
			
		||||
			let x so that Ax := x
 | 
			
		||||
			Ax = x  \qed{}
 | 
			
		||||
		\end{alltt}
 | 
			
		||||
		That's it.
 | 
			
		||||
	\end{solution}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\vfill
 | 
			
		||||
	\pagebreak
 | 
			
		||||
	\input{parts/00 intro}
 | 
			
		||||
	\input{parts/01 tmam}
 | 
			
		||||
 | 
			
		||||
\end{document}
 | 
			
		||||
							
								
								
									
										44
									
								
								Advanced/Mock a Mockingbird/parts/00 intro.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										44
									
								
								Advanced/Mock a Mockingbird/parts/00 intro.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,44 @@
 | 
			
		||||
\section{Introduction}
 | 
			
		||||
 | 
			
		||||
A certain enchanted forest is inhabited by talking birds. Each of these birds has a name, and will respond whenever it hears the name of another. Suppose you are exploring this forest and come across the bird $A$. You call the name of bird $B$. $A$ hears you and responds with the name of some other bird, which we will designate $AB$.
 | 
			
		||||
 | 
			
		||||
Bird $AB$ is, by definition, $A$'s response to $B$.
 | 
			
		||||
 | 
			
		||||
\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
As you wander around this forest, you quickly discover two interesting facts:
 | 
			
		||||
\begin{enumerate}[itemsep = 1mm]
 | 
			
		||||
	\item $A$'s responds to $B$ mustn't be the same as $B$'s response to $A$.
 | 
			
		||||
	\item Given three birds $A$, $B$, and $C$, $(AB)C$ and $A(BC)$ are not necessarily the same bird. \\
 | 
			
		||||
	Bird $A(BC)$ is $A$'s response to bird $BC$, while $(AB)C$ is $AB$'s response to $C$. \\
 | 
			
		||||
	Thus, $ABC$ is ambiguous. Parenthesis are mandatory.
 | 
			
		||||
\end{enumerate}
 | 
			
		||||
 | 
			
		||||
\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
You also find that this forest has two laws:
 | 
			
		||||
\begin{enumerate}[itemsep = 1mm]
 | 
			
		||||
	\item $L_1$, \textit{The Law of Composition}: \\
 | 
			
		||||
	For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
 | 
			
		||||
	\item $L_2$, \textit{The Law of the Mockingbird}: \\
 | 
			
		||||
	The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
 | 
			
		||||
	In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
 | 
			
		||||
\end{enumerate}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We say a bird $A$ is fond of a bird $B$ if $A$ responds to $B$ with $B$. \\
 | 
			
		||||
In other words, $A$ is fond of $B$ if $AB = B$.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
 | 
			
		||||
$$
 | 
			
		||||
	Cx = A(Bx)
 | 
			
		||||
$$
 | 
			
		||||
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
							
								
								
									
										175
									
								
								Advanced/Mock a Mockingbird/parts/01 tmam.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										175
									
								
								Advanced/Mock a Mockingbird/parts/01 tmam.tex
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,175 @@
 | 
			
		||||
\section{To Mock a Mockingbird}
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\
 | 
			
		||||
Complete his proof.
 | 
			
		||||
\begin{alltt}
 | 
			
		||||
	let A           \cmnt{Let A be any any bird.}
 | 
			
		||||
	let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
 | 
			
		||||
 | 
			
		||||
	\cmnt{The rest is up to you.}
 | 
			
		||||
	CC = ??
 | 
			
		||||
\end{alltt}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{helpbox}
 | 
			
		||||
	\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
 | 
			
		||||
	\texttt{Def:} $A$ is fond of $B$ if $AB = B$
 | 
			
		||||
\end{helpbox}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A           \cmnt{Let A be any any bird.}
 | 
			
		||||
		let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
 | 
			
		||||
		CC = A(MC)
 | 
			
		||||
		   = A(CC)  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\problem{}
 | 
			
		||||
We say a bird $A$ is \textit{egocentric} if it is fond if itself.
 | 
			
		||||
 | 
			
		||||
Show that the laws of the forest guarantee that at least one bird is egocentric.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{helpbox}
 | 
			
		||||
	\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
 | 
			
		||||
	\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
 | 
			
		||||
	\texttt{Lem:} Any bird is fond of at least one bird.
 | 
			
		||||
\end{helpbox}
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		\cmnt{We know M is fond of at least one bird.}
 | 
			
		||||
		let E so that ME = E
 | 
			
		||||
 | 
			
		||||
		ME = E     \cmnt{By definition of fondness}
 | 
			
		||||
		ME = EE    \cmnt{By definition of M}
 | 
			
		||||
		\thus{} EE = E  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
 | 
			
		||||
This means that $Ax = Bx$.
 | 
			
		||||
 | 
			
		||||
\begin{helpbox}
 | 
			
		||||
	\texttt{Def:} $Mx := xx$
 | 
			
		||||
\end{helpbox}
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	We know that $Mx = xx$. \\
 | 
			
		||||
 | 
			
		||||
	From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Take two birds $A$ and $B$. Let $C$ be their composition. \\
 | 
			
		||||
Show that $A$ must be agreeable if $C$ is agreeable. \\
 | 
			
		||||
The bear has again given you a hint.
 | 
			
		||||
\begin{alltt}
 | 
			
		||||
	\cmnt{Given information}
 | 
			
		||||
	let A, B
 | 
			
		||||
	let Cx := A(Bx)
 | 
			
		||||
 | 
			
		||||
	let D            \cmnt{Arbitrary bird}
 | 
			
		||||
	let Ex := D(Bx)  \cmnt{Define E as the composition of D and B}
 | 
			
		||||
	Cy = ??
 | 
			
		||||
\end{alltt}
 | 
			
		||||
 | 
			
		||||
\begin{helpbox}[0.65]
 | 
			
		||||
	\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
 | 
			
		||||
	\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
 | 
			
		||||
\end{helpbox}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		\cmnt{Given information}
 | 
			
		||||
		let A, B
 | 
			
		||||
		let Cx := A(Bx)
 | 
			
		||||
 | 
			
		||||
		let D           \cmnt{Arbitrary bird}
 | 
			
		||||
		let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
 | 
			
		||||
		Cy = Ey         \cmnt{For some y, because C is agreeable}
 | 
			
		||||
		\thus{} A(By) = Ey
 | 
			
		||||
		\thus{} A(By) = D(By)  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A, B, C
 | 
			
		||||
 | 
			
		||||
		\cmnt{Invoke the Law of Composition:}
 | 
			
		||||
		let Q := BC
 | 
			
		||||
		let D := AQ
 | 
			
		||||
 | 
			
		||||
		D = AQ
 | 
			
		||||
		  = A(BC)  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
 | 
			
		||||
Note that $x$ and $y$ may be the same bird. \\
 | 
			
		||||
Show that any two birds in this forest are compatible. \\
 | 
			
		||||
\begin{alltt}
 | 
			
		||||
	let A, B
 | 
			
		||||
	let Cx := A(Bx)
 | 
			
		||||
\end{alltt}
 | 
			
		||||
 | 
			
		||||
\begin{helpbox}
 | 
			
		||||
	\texttt{Law:} Law of composition \\
 | 
			
		||||
	\texttt{Lem:} Any bird is fond of at least one bird.
 | 
			
		||||
\end{helpbox}
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A, B
 | 
			
		||||
 | 
			
		||||
		let Cx := A(Bx)  \cmnt{Composition}
 | 
			
		||||
		let y := Cy      \cmnt{Let C be fond of y}
 | 
			
		||||
 | 
			
		||||
		Cy = y
 | 
			
		||||
		\thus{} A(By) = y
 | 
			
		||||
 | 
			
		||||
		let x := By  \cmnt{Rename By to x}
 | 
			
		||||
		Ax = y  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Show that any bird that is fond of at least one bird is compatible with itself.
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	\begin{alltt}
 | 
			
		||||
		let A
 | 
			
		||||
		let x so that Ax := x
 | 
			
		||||
		Ax = x  \qed{}
 | 
			
		||||
	\end{alltt}
 | 
			
		||||
	That's it.
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
		Reference in New Issue
	
	Block a user