125 lines
3.4 KiB
TeX
Raw Normal View History

2023-01-19 20:37:46 -08:00
\section{A Review of Functions}
\definition{}
2023-01-19 20:37:46 -08:00
A \textit{function} or \textit{map} $f$ from a set $A$ (the \textit{domain}, $\mathcal{D}$) to a set $B$ (the \textit{range}, $\mathcal{R}$) is a rule that assigns an element of $B$ to each element of $A$. We write this as $f: A \to B$.
\vspace{2mm}
2023-01-19 20:37:46 -08:00
Consider a function $f: \mathbb{Z} \to \mathbb{Z}$. If $f(1) = 2$, we say that 2 is the \textit{image} of 1 and 1 is a \textit{preimage} of 2 under $f$.
\vspace{2mm}
An element in a function's domain must have exactly one image. However, an element in the range may have more than one preimage.
\problem{}
2023-01-19 20:37:46 -08:00
Consider the function $f: \mathbb{R} \to \mathbb{R}^+ \cap \{0\}$ defined by $f(x) = x^2$
\begin{itemize}
\item[-] What is the image of 2?
\item[-] What are the preimages of 9?
\end{itemize}
\vfill
\definition{}
2023-01-19 20:37:46 -08:00
We say a map is \textit{one-to-one} if $a = b \implies f(a) = f(b)$ for all $a, b$ in the domain. In other words, this means that each element of the range has at most one preimage.
\definition{}
We say a map $f$ is \textit{onto} if, for every $y \in \mathcal{R}$, there exists an $x \in \mathcal{D}$ so that $f(x) = y$. In other words, this means that every $y$ in the range has a preimage in the domain.
\problem{}
Find a function that is...
\begin{enumerate}
2023-01-19 20:37:46 -08:00
\item[-] neither one-to-one nor onto
\item[-] one-to-one and not onto
\item[-] not one-to-one, but onto
\item[-] both one-to-one and onto
\end{enumerate}
We say a function that is both one-to-one and onto is \textit{bijective}.
\vfill
\pagebreak
\definition{}
Let $f: A \to B$ and $g: B \to C$. We can define a new function $(g \circ f): A \to C$, where $(g \circ f)(a) = g(f(a))$. This is called \textit{composition}.
\problem{}
Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $(g \circ f)$ be one-to-one? Provide a proof or a counterexample.
\vfill
\problem{}
Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $(g \circ f)$ be onto? Provide a proof or a counterexample.
\vfill
\pagebreak
2023-01-19 20:37:46 -08:00
\section{A Review of Modular Arithmetic}
\definition{}
2023-01-19 20:37:46 -08:00
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \\
You should all be familiar with modular arithmetic.
\definition{}
2023-01-19 20:37:46 -08:00
The inverse of an element $a$ in $\mathbb{Z}_n$ is a $b$ so that $a \times b \equiv 1$. \\
2023-01-19 20:37:46 -08:00
Not all elements of $\mathbb{Z}_n$ have an inverse. Those that do are called \textit{units}. \\
\vspace{2mm}
2023-01-23 16:11:45 -08:00
The set of all units in $\mathbb{Z}_n$ is written $\mathbb{Z}_n^\times$ \\
Read this as \say{$\mathbb{Z}$ mod $n$ cross}
\problem{}
2023-03-16 13:45:18 -07:00
What are the elements of $\mathbb{Z}_5^\times$?
\begin{solution}
$\{1, 2, 3, 4\}$
\end{solution}
\vfill
\problem{}<modtables>
2023-01-19 20:37:46 -08:00
Create an addition table for $\mathbb{Z}_4$ and a multiplication table for $(\mathbb{Z}_5)^\times$
\begin{center}
\begin{tabular}{c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & ? & ? & ? & ? \\
1 & ? & ? & ? & ? \\
2 & ? & ? & ? & ? \\
3 & ? & ? & ? & ? \\
\end{tabular}
\end{center}
\begin{solution}
\begin{center}
\begin{tabular}{c | c c c c}
+ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{tabular}
\hspace{1cm}
\begin{tabular}{c | c c c c}
2023-02-25 23:13:13 -08:00
$\times$ & 1 & 2 & 3 & 4 \\
\hline
2023-01-19 20:37:46 -08:00
1 & 1 & 2 & 3 & 4 \\
2 & 2 & 4 & 1 & 3 \\
3 & 3 & 1 & 4 & 2 \\
4 & 4 & 3 & 2 & 1 \\
\end{tabular}
\end{center}
\end{solution}
\vfill
\vfill
\pagebreak