Added initial parts of group theory handout
This commit is contained in:
		
							
								
								
									
										24
									
								
								Advanced/Group Theory/main.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										24
									
								
								Advanced/Group Theory/main.tex
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,24 @@ | ||||
| % use [nosolutions] flag to hide solutions. | ||||
| % use [solutions] flag to show solutions. | ||||
| \documentclass[ | ||||
| 	solutions | ||||
| ]{../../resources/ormc_handout} | ||||
|  | ||||
| \usepackage{tikz} | ||||
|  | ||||
| \begin{document} | ||||
|  | ||||
| 	\maketitle | ||||
| 		<Advanced 2> | ||||
| 		<Fall 2022> | ||||
| 		{Group Theory} | ||||
| 		{ | ||||
| 			Based on a lesson by Janet Chen \\ | ||||
| 			Prepared by Mark on \today | ||||
| 		} | ||||
|  | ||||
|  | ||||
| 	\input{parts/00 review} | ||||
| 	\input{parts/01 groups} | ||||
|  | ||||
| \end{document} | ||||
							
								
								
									
										121
									
								
								Advanced/Group Theory/parts/00 review.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										121
									
								
								Advanced/Group Theory/parts/00 review.tex
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,121 @@ | ||||
| \section{Review: Functions} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{function} or \textit{map} $f$ from a set $A$ (the \textit{domain}, $\mathcal{D}$) to a set $B$ (the \textit{range}, $\mathcal{R}$) is a rule that assigns each element of $A$ to an element of $B$. We write this as $f: A \to B$. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Consider a function $f: \mathbb{Z} \to \mathbb{Z}$. If $f(1) = 2$, we say that 2 is the \textit{image} of 1 and 1 is the \textit{preimage} of 2 under $f$. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| An element in a function's domain must have exactly one image. However, an element in the range may have more than one preimage. | ||||
|  | ||||
| \problem{} | ||||
| Consider the function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = x^2$ | ||||
| \begin{itemize} | ||||
| 	\item[-] What is the image of 2? | ||||
| 	\item[-] What are the preimages of 9? | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \definition{} | ||||
| We say a map is \textit{one-to-one} if $a \neq b \implies f(a) \neq f(b)$. In other words, this means that each element of the range has at most one preimage. | ||||
|  | ||||
| \definition{} | ||||
| We say a map $f$ is \textit{onto} if, for every $y \in \mathcal{R}$, there exists an $x \in \mathcal{D}$ so that $f(x) = y$. In other words, this means that every $y$ in the range has a preimage in the domain. | ||||
|  | ||||
| \problem{} | ||||
| Find a function that is... | ||||
| \begin{enumerate} | ||||
| 	\item[-] not one-to-one, not onto | ||||
| 	\item[-] one-to-one and not onto | ||||
| 	\item[-] not one-to-one, but onto | ||||
| 	\item[-] both one-to-one and onto | ||||
| \end{enumerate} | ||||
| We say a function that is both one-to-one and onto is \textit{bijective}. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \definition{} | ||||
| Let $f: A \to B$ and $g: B \to C$. We can define a new function $(g \circ f): A \to C$, where $(g \circ f)(a) = g(f(a))$. This is called \textit{composition}. | ||||
|  | ||||
| \problem{} | ||||
| Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $(g \circ f)$ be one-to-one? Provide a proof or a counterexample. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $(g \circ f)$ be onto? Provide a proof or a counterexample. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \section{Review: Modular Arithmetic} | ||||
|  | ||||
| \definition{} | ||||
| $\mathbb{Z} / n$ is the set of integers mod $n$. For example, $Z/5 = \{0, 1, 2, 3, 4\}$. \\ | ||||
| You should all be familiar with modular arithmetic. | ||||
|  | ||||
| \definition{} | ||||
| The inverse of an element $a$ in $\mathbb{Z}/n$ is a $b$ so that $a \times b \equiv 1$. \\ | ||||
|  | ||||
| Not all elements of $\mathbb{Z}/n$ have an inverse. Those that do are called \textit{units}. \\ | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The set of all units in $\mathbb{Z}/n$ is written $(\mathbb{Z}/n)^\times$ \\ | ||||
| Read this as \say{$\mathbb{Z}$ mod $n$ cross} | ||||
|  | ||||
| \problem{} | ||||
| What are the elements of $(\mathbb{Z}/5)^\times$? | ||||
|  | ||||
| \begin{solution} | ||||
| 	$\{1, 2, 3, 4\}$ | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<modtables> | ||||
| Create an addition table for $\mathbb{Z}/4$ and a multiplication table for $(\mathbb{Z}/5)^\times$ | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tabular}{c | c c c c} | ||||
| 	+ & 0 & 1 & 2 & 3 \\ | ||||
| 	\hline | ||||
| 	0 & ? & ? & ? & ? \\ | ||||
| 	1 & ? & ? & ? & ? \\ | ||||
| 	2 & ? & ? & ? & ? \\ | ||||
| 	3 & ? & ? & ? & ? \\ | ||||
| \end{tabular} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{center} | ||||
| 	\begin{tabular}{c | c c c c} | ||||
| 		+ & 0 & 1 & 2 & 3 \\ | ||||
| 		\hline | ||||
| 		0 & 0 & 1 & 2 & 3 \\ | ||||
| 		1 & 1 & 2 & 3 & 0 \\ | ||||
| 		2 & 2 & 3 & 0 & 1 \\ | ||||
| 		3 & 3 & 0 & 1 & 2 \\ | ||||
| 	\end{tabular} | ||||
| 	\hspace{1cm} | ||||
| 	\begin{tabular}{c | c c c c} | ||||
| 		\times & 1 & 2 & 3 & 4 \\ | ||||
| 		\hline | ||||
| 		1 & 1 & 2 & 4 & 3 \\ | ||||
| 		2 & 2 & 4 & 3 & 1 \\ | ||||
| 		3 & 4 & 3 & 1 & 2 \\ | ||||
| 		4 & 3 & 1 & 2 & 4 \\ | ||||
| 	\end{tabular} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										95
									
								
								Advanced/Group Theory/parts/01 groups.tex
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										95
									
								
								Advanced/Group Theory/parts/01 groups.tex
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,95 @@ | ||||
| \section{Groups} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{group} $(G, \ast)$ consists of a set $G$ and an operator $\ast$. \\ | ||||
| A group must have the following properties: \\ | ||||
|  | ||||
| \begin{enumerate} | ||||
| 	\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$. | ||||
| 	\item $\ast$ is associative: $a \ast b = b \ast a$ | ||||
| 	\item There is an \textit{identity} $\overline{0} \in G$, so that $a \ast \overline{0} = a$ for all $a \in G$. | ||||
| 	\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = \overline{0}$. $b$ is called the \textit{inverse} of $a$. \\ | ||||
| 	This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise. | ||||
| \end{enumerate} | ||||
|  | ||||
| Any pair $(G, \ast)$ that satisfies these properties is a group. | ||||
|  | ||||
| \definition{} | ||||
| Note that our definition of a group does \textbf{not} state that $a \ast b = b \ast a$. \\ | ||||
| Many interesting groups do not have this property. \\ | ||||
| Those that do are called \textit{abelian} groups. | ||||
|  | ||||
| \problem{} | ||||
| Is $(\mathbb{Z}/5, +)$ a group? \\ | ||||
| Is $(\mathbb{Z}/5, -)$ a group? \\ | ||||
| \hint{$+$ and $-$ refer to our usual definition of modular arithmetic.} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| $(\mathbb{R}, \times)$ is not a group. \\ | ||||
| Make it one by modifying $\mathbb{R}$. \\ | ||||
|  | ||||
| \begin{solution} | ||||
| 	$(\mathbb{R}, \times)$ is not a group because $0$ has no inverse. \\ | ||||
| 	The solution is simple: remove the problem. | ||||
|  | ||||
| 	\vspace{3mm} | ||||
|  | ||||
| 	$(\mathbb{R} - \{0\}, \times)$ is a group. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Can you construct a group that contains a single element? | ||||
|  | ||||
| \begin{solution} | ||||
| 	Let $(G, \circledcirc)$ be our group, where $G = \{\star\}$ and $\circledcirc$ is defined by the identity $\star \circledcirc \star = \star$ | ||||
|  | ||||
| 	Verifying that the trivial group is a group is trivial. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \definition{} | ||||
| Recall your tables from \ref{modtables}: \\ | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tabular}{c | c c c c} | ||||
| 	+ & 0 & 1 & 2 & 3 \\ | ||||
| 	\hline | ||||
| 	0 & 0 & 1 & 2 & 3 \\ | ||||
| 	1 & 1 & 2 & 3 & 0 \\ | ||||
| 	2 & 2 & 3 & 0 & 1 \\ | ||||
| 	3 & 3 & 0 & 1 & 2 \\ | ||||
| \end{tabular} | ||||
| \hspace{1cm} | ||||
| \begin{tabular}{c | c c c c} | ||||
| 	\times & 1 & 2 & 3 & 4 \\ | ||||
| 	\hline | ||||
| 	1 & 1 & 2 & 4 & 3 \\ | ||||
| 	2 & 2 & 4 & 3 & 1 \\ | ||||
| 	3 & 4 & 3 & 1 & 2 \\ | ||||
| 	4 & 3 & 1 & 2 & 4 \\ | ||||
| \end{tabular} | ||||
| \end{center} | ||||
|  | ||||
| Convince yourself that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ are the same group. \\ | ||||
| We say that two such groups are \textit{isomorphic}. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Intuitively, this means that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ have the same algebraic structure. We can translate statements about addition in $\mathbb{Z}/4$ into statements about multiplication in $(\mathbb{Z}/5)^\times$ \\ | ||||
|  | ||||
| \problem{} | ||||
| Show that a group has exactly one identity element. | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Show that each element in a group has exactly one inverse. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
		Reference in New Issue
	
	Block a user