2023-05-03 22:23:28 -07:00
\section { Table of Prime Knots}
2023-05-04 11:48:07 -07:00
A knot's \textit { crossing number} is the minimal number of crossings its projection must contain. In general, it is very difficult to determine a knot's crossing number.
2023-05-03 22:23:28 -07:00
2023-05-04 11:48:07 -07:00
\vspace { 1mm}
2023-05-03 22:23:28 -07:00
2023-05-04 11:48:07 -07:00
This table contains the 15 smallest prime knots, ordered by crossing number. \par
Mirror images are not included, even if the mirror image produces a nonisomorphic knot.
2023-05-03 22:23:28 -07:00
\vfill
2023-05-04 11:48:07 -07:00
% Images are from the appendix of the Knot book.
2023-05-03 22:23:28 -07:00
{
2023-05-04 11:48:07 -07:00
\def \w { 24mm}
2023-05-03 22:23:28 -07:00
\foreach \l /\c /\r in { %
{ 3_ 1} /{ 4_ 1} /{ 5_ 1} ,%
{ 5_ 2} /{ 6_ 1} /{ 6_ 2} ,%
{ 6_ 3} /{ 7_ 1} /{ 7_ 2} ,%
{ 7_ 3} /{ 7_ 4} /{ 7_ 5} ,%
{ 7_ 6} /{ 7_ 7} /{ 8_ 1} %
} {
\hfill
\begin { minipage} { \w }
\begin { center}
\includegraphics [width=\linewidth] { knot table/\l .png} \par
\vspace { 2mm}
{ \huge $ \l $ }
\end { center}
\end { minipage}
\hfill
\begin { minipage} { \w }
\begin { center}
\includegraphics [width=\linewidth] { knot table/\c .png} \par
\vspace { 2mm}
{ \huge $ \c $ }
\end { center}
\end { minipage}
\hfill
\begin { minipage} { \w }
\begin { center}
\includegraphics [width=\linewidth] { knot table/\r .png} \par
\vspace { 2mm}
{ \huge $ \r $ }
\end { center}
\end { minipage}
\hfill ~\par
\vspace { 4mm}
}
}
\vfill
\pagebreak