Added link section
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/borromean.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Advanced/Knots/images/borromean.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 223 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/brunnian.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Advanced/Knots/images/brunnian.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 143 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/whitehead a.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Advanced/Knots/images/whitehead a.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 202 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/whitehead b.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								Advanced/Knots/images/whitehead b.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 215 KiB | 
| @ -37,8 +37,25 @@ | ||||
|  | ||||
| 	\input{parts/0 intro.tex} | ||||
| 	\input{parts/1 composition.tex} | ||||
| 	\input{parts/2 links.tex} | ||||
|  | ||||
|  | ||||
| 	% Make sure the knot table is on an odd page | ||||
| 	% so it may be removed in a double-sided | ||||
| 	% handout. | ||||
| 	\checkoddpage | ||||
| 	\ifoddpage\else | ||||
| 		\vspace*{\fill} | ||||
| 		\begin{center} | ||||
| 		{ | ||||
| 			\Large | ||||
| 			\textbf{This page isn't empty.} | ||||
| 		} | ||||
| 		\end{center} | ||||
| 		\vspace{\fill} | ||||
| 		\pagebreak | ||||
| 	\fi | ||||
|  | ||||
| 	\input{parts/table} | ||||
|  | ||||
|  | ||||
| \end{document} | ||||
| @ -82,13 +82,9 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. | ||||
| \begin{center} | ||||
| 	\begin{minipage}[t]{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
| 		\begin{knot} | ||||
| 			\strand | ||||
| 				(0,2) .. controls +(1.5,0) and +(1.5,0) .. | ||||
| 				(0, 0) .. controls +(-1.5,0) and +(-1.5,0) .. | ||||
| 				(0,2); | ||||
| 		\end{knot} | ||||
| 		\begin{tikzpicture}[baseline=(p)] | ||||
|  | ||||
| 		\draw[circle] (0,0) circle (1); | ||||
|  | ||||
| 		\coordinate (p) at (current bounding box.center); | ||||
| 		\end{tikzpicture} | ||||
| @ -98,7 +94,6 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. | ||||
| 	\begin{minipage}[t]{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 	\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
|  | ||||
| 		\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
| 		\begin{knot}[ | ||||
| @ -122,16 +117,16 @@ The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Below are the only four distinct knots with only one crossing. \par | ||||
| Show that no nontrivial knot can have has fewer than three crossings. \par | ||||
| \hint{There are 4 such knots. What are they?} | ||||
| Below are the only four knots with one crossing. \par | ||||
| Show that every nontrivial knot more than two crossings. \par | ||||
| \hint{There are four knots with two crossings. What are they?} | ||||
|  | ||||
| \begin{center} | ||||
| 	\includegraphics[width=0.8\linewidth]{images/one crossing.png} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	Draw all four. Each is isomorphic to the unknot. | ||||
| 	Draw them all. Each is isomorphic to the unknot. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| @ -147,7 +142,7 @@ A wire or an extension cord may help. | ||||
|  | ||||
| \definition{} | ||||
| As we said before, there are many ways to draw the same knot. \par | ||||
| We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot. | ||||
| We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}. | ||||
|  | ||||
|  | ||||
| \vspace{2mm} | ||||
| @ -157,7 +152,8 @@ We call each drawing a \textit{projection}. Below are four projections of the \t | ||||
| \vspace{2mm} | ||||
|  | ||||
| \problem{} | ||||
| Convince yourself that these are equivalent. | ||||
| Convince yourself that these are equivalent. \par | ||||
| Try to deform them into each other with a cord! | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
| @ -53,8 +53,9 @@ Use a pencil or a cord to compose the figure-eight knot with itself. | ||||
| \pagebreak{} | ||||
|  | ||||
| \problem{} | ||||
| The following knots are composite. What are their prime components? \par | ||||
| Try to make them with a cord! \par | ||||
| The following knots are composite. \par | ||||
| What are their prime components? \par | ||||
| Try to make them with a cord. \par | ||||
| \hint{Use the table at the back of this handout to decompose the second knot.} | ||||
|  | ||||
| \begin{center} | ||||
|  | ||||
							
								
								
									
										76
									
								
								Advanced/Knots/parts/2 links.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										76
									
								
								Advanced/Knots/parts/2 links.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,76 @@ | ||||
| \section{Links} | ||||
|  | ||||
| \definition{} | ||||
| A \textit{link} is a set of knots intertwined with each other. \par | ||||
| Just as with knots, we say that two links are \textit{isomorphic} if one can be deformed into the other. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The \textit{Whitehead link} is one of the simplest links we can produce. \par | ||||
| It consists of two knots, so we say it is a \textit{link of two components}. | ||||
| Two projections of the Whitehead link are shown below. | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.27\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/whitehead a.png} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.25\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/whitehead b.png} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill~ | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| The \textit{$n$-unlink} is the link that consists of $n$ disjoint unknots. \par | ||||
| The 3-unlink is shown below: | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture} | ||||
|  | ||||
| 	\draw[circle] (0,0) circle (0.7); | ||||
| 	\draw[circle] (2,0) circle (0.7); | ||||
| 	\draw[circle] (4,0) circle (0.7); | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| \definition{} | ||||
| We say a nontrivial link is \textit{Brunnian} if we get an $n$-unlink after removing any component. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The \textit{Borromean Rings} are a common example of this. If we were to cut any of the three rings, the other two would fall apart. | ||||
|  | ||||
| \begin{center} | ||||
| 	\includegraphics[height=3cm]{images/borromean.png} | ||||
| \end{center} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Find a Brunnian link with four components. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Find a Brunnian link with $n$ components. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=40mm]{images/brunnian.png} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
| @ -1,15 +1,16 @@ | ||||
| \section{Table of Prime Knots} | ||||
| A knot's \textit{crossing number} is the minimal number of crossings its projection must contain. In general, it is very difficult to determine a knot's crossing number. | ||||
|  | ||||
| \vspace{1mm} | ||||
|  | ||||
| This table contains the 15 smallest prime knots, ordered by crossing number. \par | ||||
| Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot. | ||||
|  | ||||
| \vspace{5mm} | ||||
|  | ||||
| % Images are from the appendix of the Knot book. | ||||
| Mirror images are not included, even if the mirror image produces a nonisomorphic knot. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| % Images are from the appendix of the Knot book. | ||||
| { | ||||
| 	\def\w{25mm} | ||||
| 	\def\w{24mm} | ||||
| 	\foreach \l/\c/\r in {% | ||||
| 		{3_1}/{4_1}/{5_1},% | ||||
| 		{5_2}/{6_1}/{6_2},% | ||||
|  | ||||
| @ -17,6 +17,9 @@ | ||||
| \fi | ||||
|  | ||||
| \tikzset{ | ||||
| 	circle/.style = { | ||||
| 		line width = 0.8mm, | ||||
| 	}, | ||||
| 	knot diagram/every strand/.append style={ | ||||
| 		line width = 0.8mm, | ||||
| 		black | ||||
|  | ||||
		Reference in New Issue
	
	Block a user